Projects

International In Progress

Sustainable bio-fuelled SOFC hybrid plants for zero emissions dispatchable power generation 2018-2020

Title: Sustainable bio-fuelled SOFC hybrid plants for zero emissions dispatchable power generation

Reference: Mario Luigi Ferrari

Year: 2018 – 2020

Sponsor: Executive programme for scientific and technological cooperation between Italy and Sweden for the years 2018-2020

Coordinator: Università degli Studi di Genova

Partner:

1 UNIVERSITA DEGLI STUDI DI GENOVA (UNIGE) IT
2 MALARDALEN UNIVERSITY (MDH) SK

Website: –

Description:

Aiming at zero-emission distributed power generation, one of the most promising solutions is represented by bio-fueled hybrid systems based on a Solid Oxide Fuel Cell (SOFC). Since previous works demonstrated that standard controllers are not able to comply with all the SOFC constraints, advanced approaches are necessary to operate sustainable SOFC hybrid plants. Moreover, predictive control approaches (MPC tools) will allow such hybrid system to provide the grid with zero-emission dispatchable power generation, which is a key enabling technology for further penetration of renewable sources. The proposed cooperation will be strategic for the project success. Mälardalen University (MDH) will bring in the expertise on adaptive control solutions and will provide the capability to access and modify the control system of the Turbec T100 microturbine. Additional acquired knowledge on components degradation will also be shared.

University of Genoa (UNIGE) will contribute with existing software tools, the expertise in real-time models and control development, and the available hybrid system emulator test rig based on the T100. The test rig (value higher than 1.0 Meuro) couples a microturbine with SOFC cathode and anode vessels through a cyber-physical approach: the components not physically present in the rig are simulated with a realtime model operating in parallel and controlling the plant. Information about components degradation will be virtually incorporated at the software level. This emulator rig will be used to test advanced control solutions for the entire hybrid plant. This project is in line with existing Horizon 2020 Programme funded projects currently active at MDH and UNIGE. Moreover, the collaborations with the U.S. DOE-NETL, Ansaldo Energia, and First  control will complete the knowledge on SOFC degradation and T100 control system. Exchange of PhD students and/or Postdoctoral fellows between institutions will be an additional value of the project.

Newsletter:

– Kick-off meeting at the ASME Turbo Expo 2018 (Oslo)

– Seminar of Dr. Zaccaria Valentina (MDH) at UNIGE (23rd July 2018), title: Adaptive control for time varying systems

– Technical meeting at UNIGE (23rd July 2018)

– Seminar of Prof. Mario L. Ferrari (UNIGE) at MDH (13th September 2018), title: SOFC-based hybrid systems

– Technical meeting at MDH (13th September 2018)

– Seminar of Dr. Zaccaria Valentina (MDH) at UNIGE (6th November 2018), title: Controls for fuel cells and hybrid systems under degradation conditions

– Seminar of Prof. Kyprianidis Konstantinos (MDH) at UNIGE (6th November 2018), title: Introduction to Gas Turbine Conceptual Design and Technological Perspectives

– Technical meeting at UNIGE (7th November 2018)

– Seminar of Dr. Zaccaria Valentina (MDH) at UNIGE (16th May 2019), title: Electrochemical energy conversion

– Technical meeting at UNIGE (16th May 2019)

– Technical meeting at the ASME Turbo Expo 2019 (Phoenix)

– Technical meeting at the SUPEHR19 conference in Savona (6th September 2019)

– Dissemination workshop at MDH (29th October 2019)

– Technical meeting at MDH (29th October 2019)

– Seminar of Dr. Zaccaria Valentina (MDH) at UNIGE (12th November 2019), title: Controls for fuel cells and hybrid systems under degradation conditions

– Technical meeting at UNIGE (12th November 2019)

– Online technical meeting (18th May 2020)

– Online seminar of Dr. Zaccaria Valentina (MDH) at UNIGE (28th May 2020), title: Electrochemical energy conversion

– Online technical meeting (22nd July 2020)

– Online technical meeting (15th October 2020)

– Online seminar of Dr. Zaccaria Valentina (MDH) at UNIGE (10th November 2020), title: Controls for fuel cells and hybrid systems under degradation conditions

– Online seminar of Prof. Kyprianidis Konstantinos (MDH) at UNIGE (10th November 2020), title: Novel cycles for power and propulsion applications and their modelling

– Online technical meeting (17th November 2020)

– Online final meeting (15th December 2020)

Con il contributo del Ministero dell’Università e della Ricerca

PUMP-HEAT 2017-2020

Title: PUMP-HEAT  – Performance Untapped Modulation for Power and Heat via Energy Accumulation Technologies

Reference:

Year: 2017 -2020

Sponsor: European Commission

Coordinator: Università degli Studi di Genova (UNIGE)

Partner:

1 (Coordinator) UNIVERSITA DEGLI STUDI DI GENOVA (UNIGE) IT
2 RINA CONSULTING – D’APPOLONIA SPA (DAPP) IT
3 KUNGLIGA TEKNISKA HOEGSKOLAN (KTH) SE
4 ARISTOTELIO PANEPISTIMIO THESSALONIKIS (AUTH) GR
5 LIMMAT SCIENTIFIC AG (LSC) CH
6 ANSALDO ENERGIA SPA (AEN) IT
7 IREN SPA (IREN) IT
8 POLSKI KONCERN NAFTOWY ORLEN SA (ORLEN) PL
9 MITSUBISHI HITACHI POWER SYSTEMS EUROPE GMBH (MHPSE) D
10 NOVENER (NOV) FR
11 NV MAYEKAWA EUROPE SA (MAYE) B
12 SIEMENS INDUSTRY SOFTWARE SAS (SIEME) FR
13 CLAUGER (CLA) FR
14 ALFA LAVAL LUND AB (AL) SE

Website: 

Description:

image002

To un-tap Combined Cycle unexploited reserve of flexibility, and to further enhance turn-down ratio and power ramp capabilities of combined cycles, this project proposes the demonstration of a innovative concept based on the coupling of a fast-cycling highly efficient refrigeration and heating systems with a cogenerative combined cycle. The integrated system features thermal storage and advanced control concept for smart scheduling acting also as smart Load. The new Integrated System will include an innovative expander to increase the overall efficiency.

Newsletter:

ETN NEWSLETTER 2017-04

ENVISION 2017-2021

Title: ENVISION (ENergy harVesting by Invisible Solar IntegratiON in building skins

Reference: EeB 7 – 2017: Integration of energy harvesting at building and district level

Year: 2017 -2021

Sponsor: European Commission

Coordinator: TNO

Partner:

1 (Coordinator) Nederlandse Organisatie voor Toegepast Natuurwetenschappelijk Onderzo (TNO)
2 AzkoNobel (AN)
3 Koninklijke BAM groep (BAM)
4 Energie de France (EDF)
5 NSG/Plikington Benlux (NSG)
6 D’Appolonia (DAP)
7 Bergamo Tecnologie (BGT)
8 University of Genoa (UNIGE)
9 Vestia (VST)
10 Emergo (EMG)

Description:

‘ENVISION’ aims at developing façade solutions that consist of (1) panels with near infrared (NIR)

harvested colored coatings that harvest heat from solar radiation, (2) a ventilated glass concept

that harvests at least the near infrared (NIR) solar radiation through a glazing united, and (3)

photovoltaic (PV) solutions for glass in the façade. For the first time, such solutions will be

demonstrated in an integrated renovation or new building using all surface available for energy

harvesting, while coupled with a district energy grid.

JRC-FC-PROMATE

Title: JRC-FC-PROMATE

Year: 2019-2020

Partner: H2Boat, Fincantieri, UNIGE, RINA

Description:

The FC-PROMATE project aims to test under marine conditions different PEMFC systems of different suppliers, characterized by different system architectures, components and materials, originally designed for automotive or stationary applications. The final goal is the data collection for the definition of standard test protocols of fuel cell for marine applications. The project will take advantage of the synergies with the Italian Government financed on-going research project TecBIA, led by Fincantieri and conducted in collaboration with University of Genoa (UNIGE). FC-PROMATE is coordinated by H2Boat, a start-up company that aims to bring the hydrogen technology in the marine sector, with the support of Fincantieri and UNIGE.

NextMGT

Title: NextMGT  – Next Generation of Micro Gas Turbines for High Efficiency, Low Emissions and Fuel Flexibility

Reference:

Year: 2020 – 2023

Sponsor: European Commission

Coordinator: City University London (UNIGE)

Partner:

1 (Coordinator) CITY UNIVERSITY OF LONDON (CITY) UK
2 UNIVERSIDAD DE SEVILLA (USE) E
3 UNIVERSITA DEGLI STUDI DI GENOVA (UNIGE) IT
4 ARISTOTELIO PANEPISTIMIO THESSALONIKIS (AUTH) GR
5 PAUL SCHERRER INSTITUT (PSI) CH
6 UNIVERSITE CATHOLIQUE DE LOUVAIN (UCLouvain) B
7 UNIVERSITETET I STAVANGER (UiS) NO

Website: https://nextmgt.com/

Description:

The primary objective of this four-year work programme is to undertake cutting edge multidisciplinary research and development to make a step change in understanding of MGT systems’ technology and commercialisation aspects to enable large increase in their share in the energy market and contribution to the low carbon economy while providing specialised training for 15 researchers to help establish the backbone of an important industry.

ROBINSON

Title: ROBINSON – Smart integration of local energy sources and innovative storage for flexible, secure and cost-efficient energy supply on industrialized islands

Reference: Mario Luigi Ferrari

Year: 2020-2024

Sponsor:  European Commission

Coordinator: EUROPEAN TURBINE NETWORK (ETN)

Partner:

1 EUROPEAN TURBINE NETWORK (ETN) BE
2 ACONDICIONAMIENTO TARRASENSE ASSOCIACION (LEITAT) ES
3 NORWEGIAN RESEARCH CENTRE (NORCE) NO
4 EIGERSUND NAERING OG HAVN KF (ENH) NO
5 AURELIA TURBINES OY (AURE) FI
6 PAUL SCHERRER INSTITUT (PSI) CH
7 UNIVERSITA’ DEGLI STUDI DI GENOVA (UNIGE) IT
8 ENERGY INNOVATION AS (EI) NO
9 DALANE ENERGI AS (DALANE) NO
10 REST UG (REST) DE
11 PRIMA PROTEIN AS (PRIMA) NO
12 FUNDACION PARA EL DESARROLLO Y LA INNOVACION TECNOLOGICA (FUNDITEC) ES
13 HYSYTECH SRL (HST) IT
14 NORTH HIGHLAND COLLEGE (ERI) UK
15 COMHAIRLE NAN EILEAN SIAR (CNES) UK
16 POLYTECHNEIO KRITIS (TUC) GR
17 KRITI (KRITI) GR
18 STRATAGEM ENERGY LTD (STRATA) CY

Description:

ROBINSON’s main mission is to develop an integrated energy system to help decarbonise islands. Islands often find it challenging to ensure a clean, secure and cost-effective supply of energy. The key is to decrease dependency on fossil fuels and become energy self-sufficient through a mix of renewable energy generation and storage infrastructure.

To this end, the 18 partners of the consortium will work together to develop and deploy an integrated, smart and cost-efficient energy system coupling thermal and electrical networks, which will optimise the utilisation of local renewable energy sources. The system will be demonstrated on the island of Eigerøy (Norway) and lab-scale level replication studies will be conducted for the island of Crete (Greece) and the Western Isles (Scotland). Further replicability in other (European) islands and remote areas will be guaranteed by the modularity of the Energy Management System (EMS) that will be developed throughout the project.

SOLARSCO2OL

  • Title: SOLARSCO2OL – SOLAR based sCO2 Operating Low-cost plants
  • Year: 2020 – 2024
  • Sponsor: European Commission
  • Coordinator: RINA Consulting S.p.A. – RINA-C – Italia
  • Partners:
    • 1 (Coord.) RINA Consulting S.p.A. – RINA-C – Italia
    • 2 Kungliga Tekniska Högskolan – KTH – Svezia
    • 3 Moroccan Agency for Solar Energy SA – MASEN – Marocco
    • 4 IKERLAN S COOP – IKER – Spagna
    • 5 Università degli Studi di Genova – UNIGE – Italia
    • 6 ETHNIKO KENTRO EREVNAS KAI TECHNOLOGIKIS ANAPTYXIS – CERTH –  Grecia
    • 7 MAGTEL OPERACIONES, SL – MAGTEL – Spagna
    • 8 Franco Tosi Meccanica S.p.A. – FTM – Italia
    • 9 European Solar Thermal Electricity Association – ESTELA – Belgio
    • 10 MAS S.A. ADVANCED TECHNOLOGIES FOR POWER AND ENERGY – MAS – Grecia
    • 11 INGENIERIA Y TECNICAS DE MONTAJES LOINTEK, S.L. – LOINTEK – Spagna
    • 12 Nuovo Pignone S.r.l. – NP – Italia
    • 13 SEICO Heizungen GmbH – SEI – Germania
    • 14 ABENGOA ENERGIA SA – ABE – Spagna
    • 15 OCMI-OTG S.p.A. – OTG – Italia
  • Description:
  • The main goal of SOLARSCO2OL program is to demonstrate the feasibility and convenience of CSP power plants, in particular if coupled with flexible, high performant and low CAPEX power conversion units, and so the program present the supercritical-CO2 (sCO2) cycles as a key enabling technology to facilitate a larger deployment of CSP in EU panorama. To demonstrate this, the SOLARSCO2OL consortium aims to build the first European MW-scale plant prototype for a sCO2 Cycle using as thermal source of energy a CSP Solar Thermal plant with thermal storage.

FLEXnCONFU

Title: FLEXnCONFU

Year: 2020-2024

Coordinator: RINA Consulting

Partner: 

EDP – GESTAO DA PRODUCAO DE ENERGIASA
Portogallo

CNET CENTRE FOR NEW ENERGY TECHNOLOGIES SA
Portogallo

HYDROGENICS EUROPE NV
Belgio

ETHNIKO KENTRO EREVNAS KAI TECHNOLOGIKIS ANAPTYXIS
Grecia

NUOVO PIGNONE TECNOLOGIE SRL
Italia

EUROPEAN TURBINE NETWORK
Belgio

PROTON VENTURES BV
Paesi Bassi

MAS AE PROIGMENES TECHNOLOGIES ENERGEIAS KAI ISCHYOS
Grecia

FUNDACION CIRCE CENTRO DE INVESTIGACION DE RECURSOS Y CONSUMOS ENERGETICOS
Spagna

UNIVERSITA DEGLI STUDI DI GENOVA
Italia

CARDIFF UNIVERSITY
Regno Unito

TECHNISCHE UNIVERSITAT DARMSTADT
Germania

UNIVERSITE CATHOLIQUE DE LOUVAIN
Belgio

KUNGLIGA TEKNISKA HOEGSKOLAN
Svezia

COMMISSARIAT A L ENERGIE ATOMIQUE ET AUX ENERGIES ALTERNATIVES
Francia

TECHNISCHE UNIVERSITEIT EINDHOVEN
Paesi Bassi

TIRRENO POWER SPA
Italia

BELGISCH LABORATORIUM VAN DE ELEKTRICITEITSINDUSTRIE LABORELEC CVBA
Belgio

UNIVERSITE D’ORLEANS
Francia

I.C.I CALDAIE SPA
Italia

Description:

FLEXnCONFU – FLEXibilize combined cycle power plant through Power-to-X solutions using non-CONventional FUels is a research project funded by EU’s research and innovation programme Horizon 2020 (GA 884157), with the goal to develop and demonstrate innovative, economically viable and replicable power-to-X-to-power solutions that combine all available options for the effective and flexible use of surplus power from renewable energies to levelling the power plant load by converting electricity into hydrogen or ammonia prior to converting it back to power. This will enable the design and operation of an integrated power plant layout that can untap additional combined cycle flexibility.

INSPIRE

Title: INSPIRE  – INSpiring Pressure gain combustion Integration, Research, and Education

Reference: MSCA-ITN-2020-ETN

Year: 2021 – 2024

Sponsor: European Commission

Coordinator: UNIVERSITA DEGLI STUDI DI FIRENZE

Partner:

1 (Coordinator) UNIVERSITA DEGLI STUDI DI FIRENZE                     Italy

2 TECHNISCHE UNIVERSITAT BERLIN                                                      Germany

3 CENTRE EUROPEEN DE RECHERCHE ET DE FORMATION AVANCEE EN CALCUL SCIENTIFIQUE France

4 ECOLE NATIONALE SUPERIEURE DE MECANIQUE ET D’AEROTECHNIQUE France

5 UNIVERSITA DEGLI STUDI DI GENOVA                                                Italy

6 SAFRAN SA                                                                                                    France

7 KUNGLIGA TEKNISKA HOEGSKOLAN                                                   Sweden

8 POLITECNICO DI TORINO                                                                         Italy

Website:

Description:

The primary, overarching research objective of INSPIRE is to advance Pressure Gain Combustion as the next generation of sustainable,green, highly efficient and hydrogen-optimized combustion concept towards achieving the performance and emissions goals of the next few decades. Since much of the work in the topics within INPIRE has previously progressed on an individual component level, INSPIRE aims at bringing relevant expertise together and to pursue solutions on an integrated level.

LOLABAT

Title: LOLABAT – Long LAsting BATtery System

Year: 2021-2024

Sponsor: European Commission

Coordinator: CY CERGY PARIS UNIVERSITE, France

Partner:

1 (Coord.) CY CERGY PARIS UNIVERSITE France
2 SUNERGY France
3 COMMISSARIAT A L ENERGIE ATOMIQUE ET AUX ENERGIES ALTERNATIVES France
4 STOCKHOLMS UNIVERSITET Sweden
5 DEUTSCHES ZENTRUM FUR LUFT – UND RAUMFAHRT EV Germany
6 SUPERGRID INSTITUTE France
7 EVERZINC GROUP Belgium
8 BATTERYCARE S. L. Spain
9 ZENTRUM FUR SONNENENERGIE- UND WASSERSTOFF-FORSCHUNG BADEN-WURTTEMBERG Germany
10 AITEC ASESORES INTERNACIONALES SRL Spain
11 ACCUREC-RECYCLING GMBH Germany
12 OPTIMA TECHNOLOGY GMBH Germany
13 LABELEC – ESTUDOS, DESENVOLVIMENTO E ACTIVIDADES LABORATORIALS SA Portugal
14 UNIVERSITA DEGLI STUDI DI GENOVA Italy
15 RINA CONSULTING SPA Italy
16 KME ITALY SPA Italy
17 IN EXTENSO INNOVATION CROISSANCE France

 

Website: https://www.lolabat.eu/

Description:

Transition to renewable energy sources (RES) is a critical step to slow down the climate changes, to overcome the energy crisis and to ensure energy independence between different regions of the world. Battery energy storage systems (BESS) are currently seen as important technological enablers for increasing the absorption of RES into the electric grid. However, improvements in their performance, cost competitiveness and sustainability should be achieved. For EU, the complete batteries value chain and life cycle has to be considered, from access to raw material, over innovative advanced materials to modelling, production, recycling, second life, life cycle and environmental assessments. LOLABAT’s 17 stakeholders aim to develop a new promising battery chemistry, RNZB (rechargeable NiZn Battery). The RNZB presented and developed during LOLABAT will have energy and power densities both the highest just after Li-ion batteries, cost the lowest just after the Lead-acid battery, while profiting from abundant and available raw materials, non-toxic elements, high safety, low risk of thermal runaway, limited environmental impact and high recycling potential. The ambitions (2024 and after) of LOLABAT are: further increase of the cycle life of NiZn (to at least 4000 cycles at 100% DoD be the end of project), development of NiZn for grid applications and its preparation for a production in Europe, by increasing its TRL via upscaling of capacity, design and integration of BMS and sensors built up in battery packs, testing and demonstration in stationary energy storage applications via six use cases in utility grid and industrial sites, its preparation for a future industrialisation by realisation of life cycle and life cycle cost analyses, recycling studies, assessment of norms, standards and grid compliancy, realisation of business model and market studies and finally an extensive dissemination and communication of the project results and NiZn technology.

National In Progress

TECBIA

Title: TECBIA – Tecnologie a Basso Impatto Ambientale per la produzione di energia su mezzi navali

Year: 2018-2021

Sponsor: MISE

Coordinator: Fincantieri

Partner: DIME-UNIGE, Fincantieri, Isotta Fraschini, CNR-IENI, UNINA, RINA, Università di Palermo

Description:

Il progetto ha come obiettivo lo sviluppo di sistemi di generazione di energia a ridotte emissioni per applicazioni navali, con particolare riferimento all’applicazione innovativa della tecnologia dell’idrogeno in ambito navale. Il progetto prevede la costruzione di una barca laboratorio di circa 20 metri, su cui testare un sistema di generazione a fuel cell di circa 120 kW e stoccaggio dell’idrogeno a bordo.

PNRM Aria sintetica

Title: PNRM Aria sintetica – Air Independent Propulsion (AIP)

Year: 2019-2020

Coordinator: Marina Militare Italina

Description: 

Il progetto si articola in tre fasi distinte e ha come obiettivo lo studio di fattibilità, il progetto, la realizzazione e la validazione di un sistema propulsivo per sottomarini indipendente dall’aria, basato sulla tecnologia fuel cell PEM di tipo commerciale. Il progetto si pone l’obiettivo di realizzare un sistema di ricircolo catodico, basato su un sistema di taglia 30 kW di uno stack commerciale PEM.

HERMES

Title: HERMES – High Efficiency Reversible technologies in fully renewable Multi-Energy System

Reference: PRIN 2017F4S2L3

Year: 2019 – 2022

Sponsor: Italian Ministry of Education, Universities and Research, MIUR

Coordinator: UNIVERSITA DEGLI STUDI DI GENOVA (UNIGE)

Partner:

1 (Coordinator) UNIVERSITA DEGLI STUDI DI GENOVA (UNIGE)

2             POLITECNICO DI MILANO (POLIMI)

3             UNIVERSITA DEGLI STUDI DI SALERNO (UNISA)

4             UNIVERSITA DEGLI STUDI DELLA TUSCIA (UNITUS)

5             UNIVERSITA DEGLI STUDI DI PERUGIA (UNIPG)

6             UNIVERSITA DEGLI STUDI DI NAPOLI PARTHENOPE (UNIPARTH)

Website: https://hermes.prin.unige.it/

https://hermes.prin.unige.it/en/

Description:

The HERMES project aims to design an advanced multi-energy system (MES), which intelligently integrates reversible high temperature solid oxide cells with a power of up to 100% renewable energy generators (e.g. photovoltaic panels, wind turbines (micro), etc.) and storage systems (e.g. fuel tanks, batteries, etc.). The MES system is mainly oriented to the uses of polygeneration in which electricity can be produced from renewable energy sources and from combustion systems that function as fuel cells, while providing heat and refrigeration.

PIT-STOP

Title: PITSTOP – Immersive platform for the operator training

Reference:

Year: 2020 – 2022

Sponsor: Progetto finanziato da INAIL nell’ambito del programma BRIC 2019

Coordinator: Consiglio Nazionale delle Ricerche

Partner:

1 (Coordinator) CONSIGLIO NAZIONALE DELLE RICERCHE (CNR)

2            UNIVERSITA DEGLI STUDI DI GENOVA (UNIGE)

3            ISTITUTO NAZIONALE ASSICURAZIONE INFORTUNI SUL LAVORO (INAIL)

Website: http://pitstop.ge.imati.cnr.it/#services

Description:

L’obiettivo di questo progetto è la progettazione e realizzazione di un simulatore per l’acquisizione delle competenze necessarie alla conduzione, manutenzione e verifica di apparecchiature pericolose in ambiente virtuale immersivo. Le apparecchiature considerate sono i generatori di vapore. Il simulatore offrirà il vantaggio apprendere in modo attivo in un ambiente protetto e al tempo stesso realistico attraverso l’utilizzo della realtà virtuale immersiva. Si prevede di simulare situazioni a diversi gradi di complessità e pericolosità favorendo quindi la realizzazione di un percorso di apprendimento strutturato, in cui sia facile ed immediato accedere a materiale dimostrativo, tecnico e normativo mentre si eseguono operazioni. La possibilità di collegare le azioni e le modifiche dei parametri degli strumenti di lavoro a strumenti matematici in grado di simulare l’effettiva attività del processo amplierà l’insieme delle situazioni verificabili e la qualità dell’apprendimento.

International Completed

Bio-HyPP - Biogas-fired Combined Hybrid Heat and Power Plant - 2015-2019

International Project in progress

Title: Bio-HyPP – Biogas-fired Combined Hybrid Heat and Power Plant

Reference:

Year: 2015 -2019

Sponsor:

Coordinator: DEUTSCHES ZENTRUM FUER LUFT – UND RAUMFAHRT EV

Partner: MICRO TURBINE TECHNOLOGY BV, SUNFIRE GMBH, UNIVERSITA DEGLI STUDI DI GENOVA, HIFLUX LTD, TECHNISCHE UNIVERSITEIT EINDHOVEN, D’APPOLONIA SPA, GASTERRA BV

Description:

Logo Bio-Hypp

To reach the goals of improving the efficiency of CHP systems while simultaneously widening the biomass feedstock base as well as increasing operational flexibility, the project aims to develop a full scale technology demonstrator of a hybrid power plant using biogas as main fuel in lab environment. A combined hybrid heat and power plant combines a micro gas turbine (MGT) and a solid oxide fuel cell (SOFC).
The focus of the technology demonstration plant is to prove the functional capability of the plant concept, followed by detailed characterization and optimization of the integration of both subsystems. The main objective is to move the technology beyond the state of the art to TRL 4.
Electrical efficiencies of more than 60% and total thermal efficiencies of more than 90% are intended to reach at base load conditions. An operational flexibility ranging from 25% to 100% electric power should be achieved. The emission levels should not exceed 10 ppm NOx and 20 ppm CO (at 15% vol. residual oxygen). The system should allow the use of biogas with methane contents varying from 40-75%, thus covering the biogas qualities from the fermentation of the entire biomass feedstock range.
To achieve the objectives the subsystems MGT and SOFC including their subcomponents have to be adjusted and optimized by a multidisciplinary design approach using numerical and experimental measures to ensure a proper balance of plant. In addition an integrated control system has to be developed and implemented to achieve a reliable operation of the coupled subsystems.
A detailed analysis of different European markets, economic and technical constraints in terms of biogas production potentials will clarify the regional suitable sizes and attractive performance conditions of the power plant system. To identify cost reduction potentials a thermo-economic analysis will be performed. Here, an internal rate of return (IRR) of the system of higher than 15% should be achieved over a 20 years.

MefCO2 - Synthesis of methanol from captured carbon dioxide using surplus electricity - 2014-2018

Title: MefCO2 – Synthesis of methanol from captured carbon dioxide using surplus electricity

Reference:

Year: 2014 – 2018

Sponsor:

Coordinator: I-deals Innovation & Technology Venturing Services (SP)

Partner: National Institute of Chemistry Slovenia (NIC), E.ON, Cardiff Catalysis Institute (CCI), Carbon Recycling Institute (CRI), DIME – University of Genoa (UNIGE), Hydrogenics Europe (HYGS)

Description: The current project is to encompass flexible (in operation and feed) methanol synthesis with high carbon dioxide concentration-streams as an input, the latter originating from thermal power stations using fossil fuels. The demonstrational technology may alternatively be intended for the application of existing biomass combustion and gasification system streams, operating for the production of electric/thermal energy, as opposed to chemical synthesis. The other synthesis reactant, hydrogen, is to originate from water hydrolysis using surplus energy, which would be conversely difficult to return to the grid. (deployed “at exhaust location”), and facile integration capacities.

New Cycle 5 2016-2017

Title: New Cycle 5

Reference:

Year: 2016-2017

Sponsor: LGFCS

Coordinator: LGFCS

Partner:

Description:

New Cycle 4 - 2015-2016

Title: New Cycle 4

Reference:

Year: 2015-2016

Sponsor: LGFCS

Coordinator: LGFCS

Partner:

Description:

AFOSR Project - Control of level sets - 2015

Title: AFOSR Project – Control of level sets

Reference:

Year: 2015-2018

Sponsor: AFOSR

Coordinator: Università degli Studi di Genova

Partner: Università degli Studi di Genova

Description: New approach to the optimal control of level sets generated by partial differential equations to bridge the gap between computational mathematics and control of complex systems

Feasibility Study of Methanol Production from renewable sources - 2015

Title: Feasibility Study of Methanol Production from renewable sources

Reference:

Year: 2015

Sponsor:

Coordinator:

Partner:

Description: The aim of this project is to design and analyse a methanol production plant based on renewable sources.
In particular, the plant will employ biogas produced by fermentation process of biomass, or biowaste, and hydrogen produced by a pressurized alkaline electrolyser, employing timedependent
renewable energy (1 MWp PV).

New Cycle 3 - 2014-2015

Title: New Cycle 3

Reference:

Year: 2014-2015

Sponsor: LGFCS

Coordinator: LGFCS

Partner:

Description:

RESILIENT - 2012

Title: RESILIENT

Reference:

Year: 2012-2016

Sponsor: European Union

Coordinator: D’Appolonia S.p.A.

Partner: D’Appolonia Spa, Università di Genova, Sigma Orionis, Vipiemme S.p.A., Blaenau Gwent Country Borough Council, Terra Energy NV, Commissariat a l’Energie Atomique et aux Energies Alternatives, Cordium CVBA, Infrax, VITO, Acciona Infrastructuras S.A., CSTB,

Description:

RESILIENTconcept

Growing investments in distributed energy resources (DER) – renewable distributed energy generation combined with demand response, energy storage, plug-in electric vehicles and active management of distribution networks – will require new business and technology platforms to manage the increased level of diversity and complexity
of global energy management. The increasing variability of both eneration and loads will also require more sophisticated and decentralized decision making.
The RESILIENT project aims to design, develop, install and assess the energy and environmental benefits of a new integrated concept of interconnectivity between buildings, DER, grids and other networks at a district level. The RESILIENT approach will combine different innovative technologies including smart ICT components, optimized energy generation and storage technologies, also for RES, integrated to provide real time accounts of energy demand and supply at a district level and assist in decision-making process.
The project strategy relies on a comprehensive R&D and demonstration approach. The proposed integrated concept will be first modelled and simulated for different typologies of buildings and different climates and then installed, monitored and evaluated in three pilot projects (including residential and non residential buildings) in
the UK, Belgium and Italy. These demonstrators will be used to assess the energy and environmental benefits of the new integrated concept and also to validate models and technologies in order for the concept to be easily replicable throughout different climatic areas.
The major impact from RESILIENT will be the development of a complete value chain where the annual primary energy demand of buildings collated at a district level is decreased by at least 20% compared to their expected energy performance summed on an individual building basis, this energy gain being associated with a decrease of more than 20% of the CO2 emission reference level.

New Cycle 2 - 2012

Title: New Cycle 2

Reference:

Year: 2012-2013

Sponsor: LGFCS

Coordinator: LGFCS

Partner:

Description:

Energy - HUB - 2010-2014

Title: Energy – HUB

Reference:

Year: 2010-2014

Sponsor: European Union

Coordinator: TNO, The Netherlands

Partner: ECN, TNO, D’Appolonia, Acciona, Vito, Fraunhofer, VTT, University of Genoa, Solintel, EDF, Intesa San Paolo Eurodesk, Mostostal, Ertzbeg, Cestec, ICAX, H.S.W.

Description:

logo_e-hub

An E-Hub is a physical cross point, similar to an energy station, in which energy and information streams are interconnected, and where the different forms of energy can be converted into each other and/or
can be stored. The consumers and suppliers of energy should be connected to this E-hub by means of bi-directional energy grids (low and/or high temperature heat grid, cold grid for cooling, electrical grid (AC and/or DC), gas grid (H2, biogas, syngas)). Note that in this concept, not only centralised energy generation but also distributed energy generation is taken into account. This implies that the energy grid exchanges energy between the different actors (e.g. households,
renewable energy plants, offices), who may be a consumer of energy at one time, and a supplier at another time. The consumers and suppliers exchange information on their energy needs and energy production with the energy hub. The energy hub then distributes the energy available in the most efficient way over the consumers. This energy may be available as locally generated renewable energy, externally imported renewable energy (e.g. green electricity or biofuel) or industrial waste heat. Also, externally imported fossil fuel could be handled by the E-hub if required within the district energy design. The locally generated renewable energy may be generated in a distributed way (e.g. from PV modules on a number of residences) or by centralised means (a geothermal plant or a large CHP located within the district that may be fuelled by biofuel or H2).

The E-Hub concept holds for all types of energy flow, ranging from heating and cooling to electricity, biogas and H2. In addition, an E-hub may connect not only houses, but also (electrical) cars, commercial buildings, industry and agricultural companies (e.g. greenhouses).

The wider goal of the project is to develop a concept to reduce the usage of primary sources and energy to zero and by doing so, enabling the creation of a new generation of zero energy districts. To achieve this goal, the development and implementation of the E-hub concept is crucial. The project aims at developing and demonstrating the E-hub concept, including system components, by means of:

1. developing the E-hub as a system;

2. developing an ICT management system for matching of energy demand and energy supply via the E-hub, that can incorporate in a flexible way both existing and new centralised and decentralised renewable technologies (solar, wind, geothermal,…);

3. developing components that are necessary to realize the system. In particular, the development of an advanced compact thermal energy storage based on thermochemical heat storage will be a main topic, as well as the further development of thermal foundations for heat torage and pavement collector systems suitable for large scale application, also in renovation areas;

4. developing business models and service concepts in order to overcome institutional and financial barriers;

5. demonstrating an E-hub in the form of a real situation and in a number of case studies/feasibility studies. This will be realised in the demonstration project Tweewaters, and three to four scenario studies (for the city of Amsterdam in the Netherlands, the city of
Freiburg and the city of Dailin in China, if possible complemented with a fourth case to be determined within the project).

www.e-hub.org

logo_e-hub

Genius - 2010-2012

Title: Genius

Reference:

Year: 2010-2012

Sponsor: European Union

Coordinator: Philippe Moçotéguy

Partner: EUROPEAN INSTITUTE FOR ENERGY RESEARCH, CERAMIC FUEL CELLS (EUROPE) LIMITED,EBZ Entwicklungs- und Vertriebsgesellschaft Brennstoffzelle mbH, HEXIS AG , FC LAB, HTCERAMIX SA, TOPSOE FUEL CELL A/S, UNIVERSITY OF GENOA, UNIVERSITÀ DEGLI STUDI DI SALERNO,

Description:

Genius_1

The state of the health of any SOFC system is currently difficult to evaluate, which makes it difficult to respond to a fault or degradation with appropriate counter measure , to ensure the required reliability level. Therefore, the GENIUS project aims to develop a “GENERIC” tool that would only use process values (normal measurements and system control input parameters) and that would be based on a validated diagnostic algorithm. Such an algorithm would use a “GENERIC” approach so that all SOFC developers could use and implement it in their respective systems according to their specific constraints.
To guarantee the generic character of the tool, stacks and systems from four different manufacturers will be tested using commonly defined test plan that will be based on the “Design of Experiment” method. Three different types of models will be evaluated in parallel by four different academic institutions in order to define the optimal tool for fault detection and degradation identification. This will be done taking into account both “on board” diagnostic and “off line” diagnostic requirements. The diagnosis would generate a set of indicators able to quantify either the drift or the difference of the actual status with respect to nominal or expected performance. A diagnostic hardware integrating the best algorithm will be developed and validated in two different SOFC systems. Finally, physical parameters and interactions will be correlated with degradation mechanisms. This correlation will allow the definition of either counter measures (in case of fault or degradation) or of a more optimal operation point. This will make it possible to reduce maintenance to yearly intervals. It may also help reach a target of tens of thousands hours for stack or system operation lifetime. Finally, it is important to precise that most of participants of the GENIUS project are members of the FCH Joint Undertaking Initiative.

New Cycle - 2010

Title: New Cycle

Reference:

Year: 2010

Sponsor: Rolls-Royce Fuel Cell Systems ltd

Coordinator: Rolls-Royce Fuel Cell Systems

Partner:

Description:

External Fuel Processor – EFP - 2009

Title: External Fuel Processor – EFP

Reference:

Year: 2009

Sponsor: Rolls-Royce Fuel Cell Systems ltd

Coordinator: Rolls-Royce Fuel Cell Systems

Partner:

Description:

External Fuel Processor – EFP - 2008

Title: External Fuel Processor – EFP

Reference:

Year: 2008

Sponsor: Rolls-Royce Fuel Cell Systems ltd

Coordinator: Rolls-Royce Fuel Cell Systems

Partner:

Description:

Biofuels - 2008

Title: Biofuels

Reference:

Year: 2008

Sponsor: VTT (FI)

Coordinator: Prof. A. Massardo

Partner:

Description:

LARGE-SOFC - 2007-2009

Title: LARGE-SOFC

Reference: 

Year: 2007-2009

Sponsor: European Union

Coordinator: VTT Finland

Partner:

Description:

CFD analysis of IP-Sofc - 2007

Title: CFD analysis of IP-Sofc

Reference:

Year: 2007

Sponsor: Rolls-Royce Fuel Cell Systems

Coordinator: Rolls-Royce Fuel Cell Systems

Partner:

Description:

RRFCS Generator Module Modelling - 2007

Title: RRFCS Generator Module Modelling 2007

Reference:

Year: 2007

Sponsor: Rolls-Royce Fuel Cell Systems

Coordinator: Rolls-Royce Fuel Cell Systems

Partner:

Description:

External Fuel Processor – EFP - 2007

Title: External Fuel Processor – EFP

Reference:

Year: 2007

Sponsor: Rolls-Royce Fuel Cell Systems ltd

Coordinator: Rolls-Royce Fuel Cell Systems

Partner:

Description:

Methapu - 2006-2009

Title: Methapu

Reference:

Year: 2006-2009

Sponsor: European Commission

Coordinator: Wartsila

Partner:

Description: The strategic objectives of METHAPU project are as follows:

1. Assess the maturity of methanol using technology on board a commercial vessel.
2. Validate marine compatible methanol running solid oxide fuel cell technology.
3. Innovate necessary technical justifications for the use of methanol on board cargo vessels involved in international trade in order to support the introduction of necessary regulations to allowing the use
of methanol as a marine fuel.
4. Assess short-term and long-term environmental impacts of the application.
5. Enable future research activities on larger marine compatible SOFC units and methanol based economy.

This specific targeted research project aims to validate methanol technology on board a cargo vessel involved in international trade. In addition to that, another major aim is to innovate necessary technical
justifications for the use of renewable methanol on board commercial vessels in order to support the introduction of necessary regulations to allowing the use of methanol as a marine fuel. The specific components of the technology to be validated are methanol fuel bunkering, distribution, storage system and methanol consuming SOFC unit.

The consortium is made up of world-class players in the field of fuel cell system integration, sustainable shipping, classification work and environmental assessment. The project is to take two and a half-year, of which one year is dedicated to the validation of the application. The regulations and technical justifications for the use of methanol as a fuel would serve to pave the way for commercial use of methanol consuming fuel cells on board commercial vessels.

Furthermore, this research project serves as the springboard for future research activities related to sustainable society, specifically on new greener marine power sources and methanol based economy.

EnSOFC - 2006-2009

Title: EnSOFC

Reference:

Year: 2006-2009

Sponsor: European Union

Coordinator: Rolls-Royce Fuel Cell Systems

Partner: Rolls-Royce Fuel Cell Systems Ltd (UK), University of Genoa (I)

Description:

EnSOFC_header1

The project is part of an industrial effort to design and produce pressurised SOFC (Solid Oxide Fuel Cell) gas turbine hybrid units for distributed power. With projected electrical efficiencies of well above 60%, these products will be unique amongst distributed power generation technologies of 1MW plus.

A hybrid SOFC system integrating a gas turbine with a SOFC stack involves more than simply the turbine and stack. It requires the design of a series of other components and sub-systems into an integrated system. These components and sub-systems are collectively called ‘Balance of Plant’ (BoP). Although the term BoP fails to recognise the importance to the system as whole, it is used for simplicity. All fuel cell systems require extensive BoP. These can account for up to 75% of the entire system. To operate effectively and efficiently reliable BoP is required, yet it is the BoP that is responsible for the majority of failures in fuel cell systems. This is especially true of pressurized units where hybrid SOFC systems have failed to achieve their objectives to date, despite the satisfactory performance of SOFC stack.

The development and integration of BoP for a SOFC hybrid system represents a major challenge to the success of this technology. EnSOFC tackles this challenge through the provision of a range of skills and expertise in the fields of thermodynamics and thermo-economics, physical chemistry, electrochemistry, material engineering, system engineering, fluid mechanics, heat transfer and numerical modelling by drawing together complementary participants and personnel.

EnSOFC_project1

Dev-BIOSOFC - 2006-2008

Title: Dev-BIOSOFC

Reference:

Year: 2006-2008

Sponsor:

Coordinator: AGH, University of Science and Technology 30 Mickiewicz Ave., 30059 Krakow, Poland

Partner: University of Twente (Laboratory of Thermal Engineering), University of Genoa (DIMSET), Shibaura Institute of Technology (Energy Flow Research Centre), Swiss Federal Institute of Technology (Laboratory for Industrial Energy Systems),

Description: The development of a more efficient distributed electricity generation system is one environmentally friendly approach to the more effective utilisation of energy and, as a result, to the reduction of carbon dioxide emissions. Urban and agriculture areas can produce bio-fuel from municipal waste and biomass, both of which are important sources of renewable fuel. A hybrid system that combines Bio-fuels and Solid Oxide Fuel Cells with Micro Gas Turbines holds great promise as a distributed electricity generation system.

Our research into the development of this process will involve a variety of branches of science and technology which are promising in the 21st century. The combined knowledge and experience of the researchers from these fields will be introduced to enhance local scientific potential in the areas of: numerical modelling, energy analysis, material processing and mechanical and chemical engineering.
Researchers from various scientific centres will greatly influence the anticipated results of our investigation. The project will also provide the opportunity to transfer knowledge to the Host institution and for experienced local staff members to receive invaluable training in foreign laboratories, which will improve their scientific and
technical skills.

Transfer of Knowledge will be focussed on the dissemination, exploration and discussion of all important aspects of fuel cell technology as they pertain to advanced energy generation.

The researchers from the host institution will be involved in the experimental analysis and system modelling of the SOFC hybrid system.

The main purpose of the project is to set up a framework of Bio-fuels and Solid Oxide Fuel Cells with Micro Gas Turbines hybrid systems, with great mobility among the researchers from the various universities and research centres involved. This will be accomplished through the creation of a consortium of EU higher education institutions, which will develop a joint research and study programme.
The most important benefits of this project will be: to achieve an in-depth understanding of the impact of bio-fuels on the hybrid system (solid oxide fuel cells with micro gas turbine) performance; to discover what progress has been made in bio-fuel process design, operation and integration issues with solid oxide fuel cells; to
further that research; to develop numerical models to help us understand various phenomena in the SOFC cells so that new knowledge about the thermal field in the fuel cells may be obtained.

External Fuel Processor – EFP - 2006

Title: External Fuel Processor – EFP

Reference:

Year: 2006

Sponsor: Rolls-Royce Fuel Cell Systems ltd

Coordinator: Rolls-Royce Fuel Cell Systems

Partner:

Description:

FELICITAS (http://www.felicitas-fuel-cells.info/index.php) - 2005-2008

Title: FELICITAS (http://www.felicitas-fuel-cells.info/index.php)

Reference:

Year: 2005-2008

Sponsor: European Union (FP-VI)

Coordinator: Fraunhofer Institute – Germany

Partner: Fraunhofer-Gesellschaft zur (D), AVL (A), NuCellSys GmbH (D), CCM Centre for Concepts in Mechatronics B.V. (NL), Graz University of Technology (A), Fr. Lürssen Werft GmbH (D), Hamburg University of Applied Sciences (D), Imperial College of Science 8UK), N

Description: The Integrated Project FELICITAS focuses on the development of fuel cell (FC) drive trains capable of meeting the exacting demands of heavy-duty transport for road, rail and marine applications.

Two of the FC technologies most suitable for heavy-duty transport applications are Polymer Electrolyte Fuel Cells (PEFC) and Solid Oxide Fuel Cells (SOFC). Currently neither technology is capable of meeting the wide-ranging needs of heavy-duty transport either because of low efficiencies, PEFC, or poor transient performance, SOFC.

The FELICITAS S&T objectives are to use appropriate fuel cell technologies to meet the needs of heavy-duty transport for road, rail and marine applications. Where necessary the FC technologies are complemented by other technologies such as:

energy storage
dedicated technologies for thermal and/or for kinetic energy recuperation, and
internal or external reforming.
This will lead to the development of modular power train concepts which provide a better solution for heavy-duty transport than merely using a fuel cell.

The two FC technologies considered by FELICITAS

Polymer Electrolyte Fuel Cell (PEFC) technology and
Solid Oxide Fuel Cell (SOFC) technology
struggle to satisfy all of the particular demands of heavy duty transport. These include

power levels above 200 kW,
power density about 200 kW/t,
system efficiency about 60%,
hydrogen and/or hydrocarbon fuelled,
robustness and longevity,
improved environmental impact and
price competitiveness to conventional IC engines.
However, these requirements are essential in heavy-duty transport and thus they are principal objectives of FELICITAS.

The FC power trains focused by FELICITAS utilise the technological synergies provided by fuel cell clusters (FCC). The FELICITAS? S&T approach comprising:

FC clustering
FC hybridisation
form the principal theme for meeting the needs of heavy-duty transport. FELICITAS will contribute to an improvement of SOFC technology by providing:

SOFC technology for marine applications,
on-board diesel reforming technology for SOFC power trains, and
gas turbine technology for hybrid SOFC power trains.
In consequence of the so far predominant stationary application of the SOFCs significant improvements in performance and design are necessary to meet the requirements of heavy-duty transport.

On-board fuel reforming will be a critical issue too in the frame of FELICITAS, because operating on high energy density fuels, such as liquid fuels, is essential for long distance operation of heavy-duty vehicles or ships. Addressing the particular demands of marine applications is therefore the logical first step in the use of SOFC for mobile applications. FELICITAS will improve PEFC technology in a similar manner by developing:

PEFC clusters for heavy-duty road and light rail applications and
hybrid PEFC clusters with extended durability, efficiency and increased power dynamics.
PEFC technology is already well adapted for automotive applications, but durability and power levels of PEFC are remain a challenge.

PEFC efficiency does not exceed 50% due to electrochemical restrictions. However, hybridisation and clustering of PEFC modules developed within FELICITAS should be a cost efficient and practicable way to overcome this limitation.

To achieve FELICITAS? key objectives additional scientific and technical activities are required. These comprise:

analysis of requirements specific to FC application, specifications and standardisation to FC based power trains in road, rail and waterborne heavy-duty transport modes,
development of design and simulation tools for FC based power train concepts,
life-time analysis of PEFC technologies,
development of advanced power management strategies to provide high power dynamics and reliability centred operation, and
investigation and development of safety standards.
The key objectives as well as the additional S&T activities will be the basis of FELICITAS results evaluation within the consortium.

Teesside Power Station (2000 MW) modelling and monitoring - 2005-2006

Title: Teesside Power Station (2000 MW) modelling and monitoring

Reference:

Year: 2005-2006

Sponsor: Px ltd.

Coordinator: S. Scazzola

Partner:

Description:

Two shafts turbochargers analysis and testing - 2005-2006

Title: Two shafts turbochargers analysis and testing

Reference:

Year: 2005-2006

Sponsor: Honeywell Turbo Power

Coordinator: G. Figura

Partner:

Description:

External Fuel Processor – EFP - 2005

Title: External Fuel Processor – EFP

Reference:

Year: 2005

Sponsor: Rolls-Royce Fuel Cell Systems ltd

Coordinator: Rolls-Royce Fuel Cell Systems

Partner:

Description: Modelling and control system development for Rolls-Royce external fuel processor units.

Combined Cycle Monitoring - 2005

Title: Combined Cycle Monitoring

Reference:

Year: 2005

Sponsor: PX ltd (UK)

Coordinator: Ansaldo Energia

Partner:

Description:

REAL-SOFC (http://www.real-sofc.org/about) - 2004-2008

Title: REAL-SOFC (http://www.real-sofc.org/about)

Reference:

Year: 2004-2008

Sponsor: European Union (FP-VI)

Coordinator: Forschungszentrum J?lich GmbH – Germany

Partner:

Description: The aim of the Integrated Project Real-SOFC is to solve the persisting problems of ageing with planar Solid Oxide Fuel Cells (SOFC) in a concerted action of the European fuel cell industry and research institutions. This includes gaining full understanding of degradation processes, finding solutions to reduce ageing and producing improved materials that will then be tested in stacks. In this process further consideration will be given to the design of cost effective materials, low cost components and optimised manufacturing processes.

SYS#4 - 2004

Title: SYS#4

Reference:

Year: 2004

Sponsor: Rolls-Royce plc

Coordinator: Rolls-Royce Fuel Cell Systems

Partner:

Description: Modelling and control system development for Rolls-Royce fuel cell gas turbine hybrid system.

PIP-SOFC (http://ec.europa.eu/research/energy/pdf/efchp_fuelcell8.pdf) - 2003-2006

Title: PIP-SOFC (http://ec.europa.eu/research/energy/pdf/efchp_fuelcell8.pdf)

Reference:

Year: 2003-2006

Sponsor: European Union (FP-V)

Coordinator: Rolls Royce (UK)

Partner: Morgan (UK), Gaz de France (F), Risoe (DK), Università di Genova (I)

Description: Pressurized IP-SOFC

Objectives:
The project aims to develop a pressurized 10 kWe fuel cell (FC) block with integral internal reforming and operate it with a hydrocarbon fuel representative of operation on natural gas.

Challenges ? Problems Addressed:
Challenges related to pressurization are: achieving electrochemical performance, maintaining durability, sealing and controlling temperature, air flow and heat balance within the system.
Challenges related to the internal reforming system are: controlling the heat load, avoiding carbon deposition, achieving durability and integrating heat management within the stack.
Interactions with other projects will take place to ensure an overall coordinated approach.

Project structure:
The project has six work packages: Active bundle enhancement, Reforming bundle, Flow and re-circulation, Strip and short block design, Project interaction and Test and validation.

Expected Impact and Exploitation:
This project will develop and demonstrate the core fuel cell stack technology required for FC hybrid systems to be developed by Rolls-Royce Fuel Cell Systems Ltd. This will form the basis of a highly competitive EU industry with a significant impact on reducing CO2 emissions and meeting Kyoto objectives.

Progetto Interreg III Alcotra n 008 Utilizzo e gestione energetica sostenibile delle fonti rinnovabili in aree protette (SIC) Siti di Importanza Comunitaria e Parchi Naturali Regionali - 2003-2004

Title: Progetto Interreg III Alcotra n 008 Utilizzo e gestione energetica sostenibile delle fonti rinnovabili in aree protette (SIC) Siti di Importanza Comunitaria e Parchi Naturali Regionali

Reference:

Year: 2003-2004

Sponsor: European Union, Regione Liguria

Coordinator: A. F. Massardo

Partner:

Description: The project aims at studying possible and viable installations for and renewable energy plants (wind, solar, hydroelectric and biomass) in the protected area of Liguria around the city of Imperia.

The main targets and milestones are:

* Analysis of territory (screening) for the definition of available renewable sources and their possible exploitation.

* Formulation of direction guidelines for the endurable utilisation of renewable energetic resources and experimentation of these lines in two test plants.

* Exchange of experiences with the French partners who are involved in the project and who have expertise in the Rhone-Alps Region.

* Development of proper software tools for the management biomass-fuled plants.

CE-IGT (http://www.ce-igt.org/) - 2002

Title: CE-IGT (http://www.ce-igt.org/)

Reference:

Year: 2002

Sponsor: European Union (FP-V)

Coordinator: University of Aachen (D)

Partner:

Description: Centre Excellence for Industrial Gas Turbines.

The aim of this project is to define European Centres of Excellence, related to Industrial Gas Turbine (IGT) technology in the up to 50 MWe power range, as a platform for the European Research Area.

The objectives of CE-IGT are to:

* Identify technology gaps which need to be solved to enable industrial gas turbines to become the most efficient, clean and reliable power source of the future;

* Establish clearly defined research fields, conduct an unbiased and objective survey to find the best research institutions in these fields and then recommend them as ?Centres of Excellence? (CoE);

* Define and prepare in technical clusters European research projects where the CoE?s will play an essential role.

Successful completion of the CE-IGT project will result in more fully co-ordinated European research activities related to the IGT technology through the identification of CoE?s. A greater awareness of research activities will lead to less duplication of research efforts and create a structured base for high quality European research projects. This concerted action enables the European IGT industry to concentrate on priority research areas in which EU actions will add the greatest possible value to improve the competitive position of the European IGT industry.

IM-SOFC-GT - 2001-2003

Title: IM-SOFC-GT

Reference:

Year: 2001-2003

Sponsor: European Union (FP-V)

Coordinator: Rolls Royce – UK

Partner:

Description: Integrated Modelling – Solid Oxide Fuel Cell – Gas Turbine Hybrid Systems.

Project flyer

The project focuses on stationary power systems primarily fuelled by natural gas but also includes work to identify the most favourable bio-gas for use in Fuel Cell-Gas Turbine (FC/GT) hybrids.
Three types of systems are being considered with different sizes and configurations.

The project has 5 work packages, which are to be completed over two and a half years. They cover:

* Assessment of how market pressures map into product requirements for each of the three types of systems. Performance requirements will be targeted and the best technology to achieve the expected performance will be defined.

* Development of generic modelling capabilities, including the validation of detailed finite volume thermal and chemical models.

* Development of reduced complexity fuel cell models for use in integrated system modelling. A close integration of system and stack models will be used, enabling a wider range of system configurations to be explored than previously and improving the potential for finding lower cost systems.

* Preliminary system designs, one in each size category.

* Recommendations for future work.

IM-SOFC-GT

GTPOM - 2001-2002

Title: GTPOM

Reference:

Year: 2001-2002

Sponsor: European Union (FP-V)

Coordinator: Rolls Royce – UK

Partner:

Description: Gas Turbine Plant Optimisation Modeling.

This project aims at developing a computational tool which enables full thermoeconomic power plant development by integrating and optimising system performance with Life cycle costs and environmental impact.
This will provide improved economic competitiveness for the EU industry and also minimise harmful pollution on a global scale by identifying power generation system concepts that offer the biggest possible reductions in Life Cycle Costs, resource consumption and environmental impact.

The work will be focused on developing a flexible software tool that can perform complete techno-economic optimisation of many advanced gas turbine cycle concepts of recognised or perceived potential.
The tool will include a full economic and optimisation capability, which will be applied, in a series of case studies, to minimise the Life Cycle Costs, also leading to the identification of environmentally friendly systems.

gtpom_2

gtpom_1

Alfa GEOPHILES - 1998-2000

Title: Alfa GEOPHILES

Reference:

Year: 1998-2000

Sponsor: European Union

Coordinator: Cranfield University (UK)

Partner:

Description: The project studied all the possible technical solutions for efficient forest biomass utilisation.
Participating countries: Brazil, Uruguay, UK, Belgium, Greece, Italy and Spain.

National Completed

HI-SEA Joint Lab - 2017-2018

Title: HI-SEA Joint Lab

Reference:

Year: 2017-2018

Sponsor: Fincantieri

Coordinator:

Partner: Università di Genova, Fincantieri

Description:

Sistemi di monitoraggio e diagnostica per cicli combinati - 2017-2018

Title: Sistemi di monitoraggio e diagnostica per impianti cogenerativi ed a fonte rinnovabile

Reference:

Year: 2017-2018

Sponsor: Ansaldo Energia

Coordinator:

Partner: Università di Genova, Ansaldo Energia

Description:

Si affronteranno le attività di sviluppo, test e sperimentazione di sistemi di monitoraggio e diagnostica per cicli combinati. Verranno utilizzate le informazioni raccolte da impianti reali per valutare la produttività media degli impianti, anche in relazione al livello di incentivazione della loro produzione energetica.

Innovazioni impiantistiche in Cicli Combinati Cogenerativi 2016-2017

Title: Innovazioni impiantistiche in Cicli Combinati Cogenerativi

Reference:

Year: 2016- 2017

Sponsor: IREN

Coordinator:

Partner:

Description:

Torino Impianti termoelettrici TLR Moncalieri

Torino Impianti termoelettrici TLR Moncalieri

Fattibilità tecnico-economica dell’applicazione di componenti innovativi in Cicli Combinati a servizio di reti diTeleriscaldamento (RdT) dotate di accumulo termico.

SeaWHAM - Sviluppo e sperimentazione di stazione di ricarica off-shore per sistemi navali autonomi tramite convertitore di energia dal moto ondoso e microturbina - 2016-2018

Title: SeaWHAM – Sviluppo e sperimentazione di stazione di ricarica off-shore per sistemi navali autonomi tramite convertitore di energia dal moto ondoso e microturbina.

Reference:

Year: 2016- 2018

Sponsor:

Coordinator:

Partner: UNIGE, Techcom Srl, Advanced Microturbines Srl

Description:

Campagna sperimentale con emulatore di sistemi ibridi celle a combustibile-turbine a gas -2016

Title: Campagna sperimentale con emulatore di sistemi ibridi celle a combustibile-turbine a gas.

Reference:

Year: 2016

Sponsor: CNR-ICMATE

Coordinator:

Partner: Università degli Studi di Genova, CNR-ICMATE

Description:

Tool for off-design calculations of Ansaldo Energia - 2016-2018

Title: Tool for off-design calculations of Ansaldo Energia

Reference:

Year: 2016-2018

Sponsor: Ansaldo Energia

Coordinator: Ansaldo Energia

Partner: Università degli Studi di Genova, Ansaldo Energia

Description:

SITE - Sistemi Intelligenti per lo sviluppo di Tecnologie Energetiche - 2015-2017

Title: SITE – Sistemi Intelligenti per lo sviluppo di Tecnologie Energetiche

Reference:

Year: 2015 – 2017

Sponsor: MIUR

Coordinator: Università degli Studi di Genova – DIME

Partner: Università degli Studi di Genova – DIME, Ansaldo Energia, Selex ES, Ansaldo Nucleare, Aitek, FOS, IESolutions, Sistemi Digitali, Softeco, Sitem, Gruppo Sigla, Telerobotlabs, Graaltech

Description: Il progetto SITE si articola in due linee di progetto indipendenti.
Nell’ambito della linea di progetto “Algoritmi e modelli di gestione di un distretto energetico” verranno effettuate attività di studio e ricerca nelle seguenti aree:
Questa linea di progetto prevede quindi sia attività di studio che attività implementative, il cui obiettivo finale è la realizzazione di un pilota di “distretto energetico“ e di un pacchetto SW che ne analizzi i comportamenti e ne ottimizzi le prestazioni, nonché lo studio del modello teorico del sistema e dei suoi componenti, validato attraverso il prototipo stesso.
La linea di progetto “Sistema integrato per la gestione di rifiuti nucleari” si propone invece lo studio e lo sviluppo di tre tipologie di item per il decomissioning e la gestione dei rifiuti operazionali di impianti nucleari.

BIOMASS + “Interventi operativi per l’attivazione delle filiere corte” - 2014-2015

Title: BIOMASS + “Interventi operativi per l’attivazione delle filiere corte”

Reference:

Year: 2014 – 2015

Sponsor:

Coordinator:

Partner:

Description: “Analisi e monitoraggio dell’esalazione dei fumi della caldaia sperimentale realizzata nell’ambito del progetto BIOMASS + e ubicata presso l’azienda Regionale di Alberese e il supporto alla sperimentazione relativa alla produzione di carbone dalla pirolisi del legname derivante dai boschi certificati certificazione Pefc“

Studio dell’applicazione di Celle a combustibile su Mega Yachts - 2013-2015

Title: Studio dell’applicazione di Celle a combustibile su Mega Yachts

Reference:

Year: 2013 – 2015

Sponsor:

Coordinator:

Partner:

Description: Il presente programma di collaborazione prevede l’impegno dell’Università di Genova (UNIGE) in alcune delle attività di Ricerca Industriale e Sviluppo Sperimentale che Fincantieri (FC) sta effettuando nel campo dell’utilizzo di combustibili alternativi per la propulsione navale ed, in particolare, per l’impiego delle celle a combustibile

Industria 2015 - Ecopyrogas - 2009-2011

Title: Industria 2015 – Ecopyrogas

Reference:

Year: 2009 – 2011

Sponsor: MIUR

Coordinator: Energy Recuperator

Partner: Energy Recuperator Spa, Università degli Studi di Genova, Università della Calabria, GEOCART Srl

Description: The program consists in the realization of a pilot plant for the production of electric power by using the technology of the gasification of the biomass. Such technology allows to get very greater electric outputs in comparison to the traditional combustion, because from the output of the Rankine cycle of the steam plants, one passes to the output of the Otto cycle (or Diesel) thanks to the use of a internal-combustion engine.
To get the gas from the biomass, a reactor of pyro-gasification must be realized on the basis of an innovative project that solves the main problems connected to the operation of the gasification plants. The plant shall have an indicative size of 3 MWt and it is expected to get an electric power of around 1 MWe: the choice to make a pilot plant of meaningful dimensions is due to the wish to also overcome the up-scale problems that have often caused the failure of many laboratory projects with reduced dimensions.

In this program ample space has been given to the industrial research, which includes both the phase of the planning of the new conception reactor, both that of investigation on the fittest catalysts to the process; however the greater resources have been destined to the experimental development of the pilot plant, which includes both the realization of the gasification reactor, and of the most conventional sections of the plant, for which the selected industrial partners have acquired, during many years of activity, a consolidated and reliable technological experience.

The purpose of the ECOPYROGAS program is the generation of electric power from biomass on medium-great scale to get:
– a remarkable increase of the electric output: the program passes from the Rankine cycle with a 30% maximum output in the great plants and of 25% for the small plants, to a Otto cycle (or Diesel) with electric outputs that reach 42%:
– a great reliability of the process to such levels to be competitive with the generation of electric power derived by the fossil combustibles, thanks to the production of a clean biogas with a suitable calorific power;
– a lower emission of pollutants (in compliance with the UE Standards) achieved thanks to the employment of a smaller content of oxygen in comparison to the stoichiometric one, bringing so to a lower production of NOx (less then 50 ppms) and a lower level of CO and CO2 in comparison to the traditional process of combustion.

Industria 2015 – Hydrostore - 2009-2011

Title: Industria 2015 – Hydrostore

Reference:

Year: 2009 – 2011

Sponsor: MIUR

Coordinator: ENEL Produzione Centro Ricerche Pisa

Partner: Venezia Tecnologie S.p.A., Acta S.p.a., Enel Produzione S.p.A, Giacomini S.p.A. , MBN Nanomaterialia S.p.a. , Pometon S.p.A. , SGS Future S.R.L. , SOL S.p.A. , TPA Brianza , CESI RICERCA S.p.A. , Consiglio Nazionale Delle Ricerche – Istituto Nazionale per

Description: La più importante sfida tecnologica per arrivare ad un utilizzo diffuso dell’idrogeno quale vettore energetico consiste nel trovare un metodo efficiente di accumulo dello stesso, necessario per immagazzinare l’energia prodotta sia dalle fonti energetiche discontinue sia da quelle continue nei periodi di scarsa domanda e per disporre di un vettore energetico nelle applicazioni veicolari.
Il presente Programma HYDROSTORE si pone l’obiettivo di sviluppare sistemi innovativi d’accumulo dell’idrogeno organizzando sinergicamente un insieme qualificato di aziende e di organismi di ricerca da anni impegnati nel settore.
Coerentemente con le indicazioni del Bando, tali sistemi innovativi, basati sull’utilizzo di speciali materiali assorbitori, mireranno a conseguire “vantaggi sostanziali in termini di costi (applicazioni stazionarie) e/o di pesi e ingombri (applicazioni di trasporto) rispetto ai sistemi convenzionali di accumulo in serbatoi ad altissima pressione”. Lo stato dell’arte attuale consente di affermare che lo stoccaggio in materiali come gli idruri metallici è intrinsecamente sicuro e consente capacità volumetriche più alte dell’idrogeno liquido e, a maggior ragione, dell’idrogeno gassoso anche se ad altissima pressione. Alcuni dei materiali già approfonditamente studiati sono adatti per un’attività di ricerca e sviluppo indirizzata ad affrontare industrialmente le richieste dei primi mercati.
Poiché attualmente in Italia non sono presenti attività per la produzione industriale di materiali e sistemi di accumulo, già commercializzati in alcuni Paesi, il Programma HYDROSTORE propone di sviluppare i seguenti materiali e dispositivi:
– idruri a bassa temperatura di leghe preferenzialmente AB5 e AB2, da produrre sia per macinazione ad alta energia sia con metodi metallurgici tradizionali, per l’impiego in serbatoi prototipo per imbarcazioni con motorizzazione elettrica a cella a combustibile PEM;
– idruri ad alta temperatura a base Mg, adeguatamente catalizzati, e miscele di ammide di Li e idruro di Mg, prodotti per macinazione ad alta energia, da utilizzare in serbatoi per applicazioni stazionarie;
– idruri chimici (sodio-boro idruri), da usare in serbatoi per applicazioni stazionarie;
– prototipi di serbatoi adatti all’accumulo ed al rilascio dell’idrogeno e tecnologie necessarie alla gestione dei materiali di stoccaggio.
Gli obiettivi del Programma sono tutti concretamente perseguibili, integrati, estremamente innovativi ed utili allo sviluppo del settore nel sistema Paese. Schematicamente essi consistono in:
– realizzare la prima ed unica filiera di produzione nazionale di idruri metallici “tradizionali” di leghe preferenzialmente del tipo AB5 e AB2, e a base Mg, per lo stoccaggio di idrogeno, operativa dalla ricerca sino alla scala pilota e preindustriale;
– validare tali idruri su scala pilota e preindustriale;
– verificare l’applicabilità di idruri chimici e di relativi sistemi pilota stazionari;
– esplorare le concrete potenzialità offerte da materiali adatti all’accumulo di idrogeno alternativi ai precedenti in quanto di caratteristiche possibilmente più avanzate;
– realizzare prototipi funzionanti di serbatoi finalizzati a specifiche applicazioni, su scala pilota e preindustriale: stazionario, trasporto su imbarcazioni per acque interne;
– studiare l’integrazione e l’ottimizzazione dei prototipi sviluppati con sistemi di produzione dell’idrogeno mediante elettrolisi dell’acqua (realizzando a questo scopo un dispositivo innovativo) da fonti rinnovabili (fotovoltaico ed eolico) e del suo utilizzo in sistemi di generazione cogenerativi;
Le conoscenze acquisite sui sistemi d’accumulo d’idrogeno realizzati, potranno in prospettiva essere valorizzate in altri settori applicativi, quali quello veicolare terrestre.

Sviluppo di un sistema MCFC pressurizzato e sperimentazione di un impianto dimostrativo da 500 kW alimentato con gas di sintesi a composizione variabile - 2005-2007

Title: Sviluppo di un sistema MCFC pressurizzato e sperimentazione di un impianto dimostrativo da 500 kW alimentato con gas di sintesi a composizione variabile

Reference:

Year: 2005 – 2007

Sponsor: MIUR

Coordinator: Ansaldo Fuel Cell Co.

Partner: Università di Genova, Politecnico di Milano, Ansaldo Fuel Cells S.p.A. (AFCo), Ente Nazionale Tecnologie per l’Energia e per l’Ambiente (ENEA), ZINCAR S.r.l.

Description:

Studio ed organizzazione di attività di ship dismantling di navi militari con analisi energetica, ambientale ed economica - 2016-2017

Title: Studio ed organizzazione di attività di ship dismantling di navi militari con analisi energetica, ambientale ed economica

Reference:

Year: 2016 – 2017

Sponsor:

Coordinator:

Partner: Università degli Studi di Genova, AID – Azienda Industria Difesa

Description: sviluppare un Piano di Riciclaggio Nave, competitivo e sostenibile, che descriva dettagliatamente tutte le attività previste nell’ambito di un progetto di smantellamento che abbia quale obiettivo quello di massimizzare la separazione dei materiali di risulta e le operazioni di recupero. Il Piano di Riciclaggio Nave deve anche includere un Piano di Gestione Rifiuti dettagliato che descriva le modalità di smaltimento, recupero e riutilizzo di tutti i materiali prodotti durante le attività di smantellamento

Analisi sperimentale delle prestazioni di microespansori ad aria tipo Tesla - 2016

Title: Analisi sperimentale delle prestazioni di microespansori ad aria tipo Tesla.

Reference:

Year: 2016

Sponsor: H2Boat s.r.l.

Coordinator: H2Boat s.r.l.

Partner: Università degli Studi di Genova, H2Boat s.r.l.

Description:

Analisi dei fenomeni di instabilità su circuito di sicurezza per aspirazione gas nocivi - 2016

Title: Analisi dei fenomeni di instabilità su circuito di sicurezza per aspirazione gas nocivi.

Reference:

Year: 2016

Sponsor: Expertise Group s.r.l.

Coordinator:

Partner: Università degli Studi di Genova, Expertise Group s.r.l.

Description:

Fincantieri Challenge - 2016-2017

Title: Fincantieri Challenge

Reference:

Year: 2016 – 2017

Sponsor: Fincantieri

Coordinator:

Partner: Università degli Studi di Genova, Fincantieri

Description:

Sistemi di monitoraggio e diagnostica per impianti cogenerativi ed a fonte rinnovabile 2015

Title: Sistemi di monitoraggio e diagnostica per impianti cogenerativi ed a fonte rinnovabile

Reference:

Year: 2015

Sponsor: AEEGSI

Coordinator: AEEGSI

Partner: Università di Genova, AEEGSI

Description: Si affronteranno le attività di sviluppo, test e
sperimentazione di sistemi di monitoraggio e diagnostica di impianti energetici distribuiti, per applicazioni
cogenerative e per la produzione di energia da fonte rinnovabile. Verranno utilizzate le informazioni raccolte
da impianti reali per valutare la produttività media degli impianti, anche in relazione al livello di
incentivazione della loro produzione energetica. L’analisi verrà estesa ai nuovi impianti soggetti alla
normativa sulla Cogenerazione ad Alto Rendimento, con valutazione del Primary Energy Saving in casi di
studio specifici.

Seaspoon: verso la nuova energia dal mare 2

Title: Seaspoon: verso la nuova energia dal mare 2

Reference:

Year:

Sponsor: Distretto Ligure delle Tecnologie Marine

Coordinator: CFD Engineering Srl

Partner: Techcom Srl, 3DB Snc, Università di Genova

Description:

Logo_OK

Il progetto Seaspoon II ha come obiettivo la costruzione di un prototipo in scala 1:20 da circa 3-5kW elettrici ed il test dal vero in mare. Basandosi sui risultati preliminari della sperimentazione in vasca(Seaspoon I), che hanno dimostrato la fattibilità dell’idea e le sue elevate potenzialità, e avendo verificato la bontà del modello previsionale sviluppato, si dovrà sviluppare l’ingegneria necessaria per la realizzazione di un prototipo marino, garantendo la sopravvivenza del generatore in mare e ottimizzandone il funzionamento. Oltre alla realizzazione del prototipo in scala 1:20, si affronteranno le seguenti problematiche:

• l’installazione del dispositivo in mare aperto (varo, ormeggio ecc.)

• il controllo e monitoraggio del convertitore (posizionamento e regolazione rispetto allo stato di mare, auto-pilotaggio, pilotaggio remoto, stato del
generatore)

• Lo studio del generatore in ambiente reale (acquisizione dati durante campagna in mare)

• l’industrializzazione del dispositivo per la produzione in serie

La realizzazione del prototipo necessita uno studio approfondito del dispositivo di ormeggio, del sistema di orientamento e dei materiali dei diversi componenti del generatore. In particolare, com’è noto, sarà critica la caratterizzazione delle parti esposte alle maggiori sollecitazioni (pale) e delle parti rotanti che maggiormente degradano per effetti corrosivi e vegetativi. La lettura dei dati di funzionamento durante il test in mare, oltre a fornire alla futura sala di controllo l’eventuale presenza di anomalie, potrà essere utilizzata dal dispositivo stesso per elaborare autodecisioni
intelligenti in caso di assenza di comunicazione. La progettazione verrà adeguatamente supportata da analisi CFD, con un duplice fine: massimizzazione della resa energetica, down-scaling delle previsioni meteo sull’area interessata per fornire una previsione di alert ad alta  affidabilità per proteggere l’impianto.

Infine, ai fini di una futura industrializzazione, occorre individuare le tecnologie che consentano l’abbattimento dei costi, la rapidità della realizzazione e la semplicità dell’assemblaggio e degli interventi manutentivi anche in sito.

Monitoraggio di secondo principio degli impianti - 2014-2015

Title: Monitoraggio di secondo principio degli impianti

Reference:

Year: 2014 – 2015

Sponsor: Ansaldo Energia SpA

Coordinator: Ansaldo Energia SpA

Partner: Ansaldo Energia SpA, Università di Genova

Description: Il presente progetto di ricerca, della durata di un anno, si colloca all’interno delle attività di Service di Ansaldo Energia, in particolare a riguardo del monitoraggio e della diagnostica industriale dei cicli combinati. Il progetto si concentra sull’analisi exergetica dei componenti di impianto, che consente la distribuzione e la quantificazione delle irreversibilità del processo produttivo e quindi l’identificazione dei componenti più inefficienti. Sulla base dei risultati ottenuti e comunque a discrezione di AEN, sarà eventualmente possibile prolungare il progetto per un ulteriore anno, al fine di testare applicazioni della teoria del power gap; tale strumento di calcolo, sviluppato dal Thermochemical Power Group del DIME, Università di Genova, si basa sulla termoeconomia “interna”, a sua volta derivante dall’analisi exergetica d’impianto. L’obiettivo ultimo è quello di valutare, in maniera computazionalmente efficiente, il contributo di ogni componente al degrado di prestazioni dell’impianto. L’obiettivo dell’attività descritta è quello di poter trasferire i risultati della ricerca ad un’applicazione industriale, che possa permettere il miglioramento delle attività dell’impianto e sia il più possibile “user-friendly”, ovvero di facile accesso e comprensione. La collaborazione Accademia-Industria è alla base della presente proposta di attività di ricerca: ciò consentirà, da un lato, l’applicazione di strumenti teorici a casi reali con validazione degli stessi, dall’altro la disponibilità di strumenti diagnostici innovativi applicabili ai cicli combinati. A tal fine, il ricercatore sarà presente in azienda per la maggior parte della durata dell’assegno. L’applicazione ad impianti realmente esistenti consentirà di contribuire alla maggiore competitività dell’industria con la possibile offerta di prodotti ad elevato contenuto di innovazione tecnologica.

Spazi urbani residenziali e città a zero energia – fattibilità e criteri di diagnostica per soluzioni impiantistiche innovative - 2014

Title: Spazi urbani residenziali e città a zero energia – fattibilità e criteri di diagnostica per soluzioni impiantistiche innovative

Reference:

Year: 2014

Sponsor: D’Appolonia

Coordinator: D’Appolonia

Partner: D’Appolonia, Università di Genova

Description: Il presente progetto si focalizza su spazi urbani destinati al rinnovamento o ristrutturazione. L’obiettivo generale è rendere tali distretti energetici urbani energeticamente indipendenti. Nello specifico, il presente contratto di ricerca prevede lo studio di fattibilità di tecnologie impiantistiche innovative, quali, ad esempio, la trigenerazione, l’energy harvesting termico, le celle a combustibile, fonti rinnovabili in genere; la definizione di opportuni indici di prestazione ai fini del monitoraggio e diagnostica.

Development of design tool for underfiring flowrate distribution in coke oven battery - 2014

Title: Development of design tool for underfiring flowrate distribution in coke oven battery

Reference:

Year: 2014

Sponsor:

Coordinator:

Partner:

Description: Development of calculation tool for the estimation of pressure drops in combustion system of coke oven battery and of air and gas distribution between heating flues of a heating wall and between heatings walls of battery during both Mixed Gas and Coke Oven Gas heating regimes.

Supporto all’attività di diagnostica remotizzata - 2013-2014

Title: Supporto all’attività di diagnostica remotizzata

Reference:

Year: 2013 – 2014

Sponsor:

Coordinator:

Partner:

Description: Obiettivo principale del sistema richiesto in fornitura deve essere quello di rendere disponibili al Management centrale (Direzione Centrale Produzione, Direzione Centrale Energy Management) ed al Management locale dei tre siti validi strumenti per la lettura, l’archiviazione, l’interrogazione e l’analisi dei dati relativi alla produzione per l’ottimizzazione e l’implementazione di una manutenzione predittiva sempre più efficace ed orientata alla riduzione dei costi di produzione. Per raggiungere questi obiettivi, Tirreno Power intende iniziare una collaborazione con l’Università degli studi di Genova per potenziare il know-how aziendale nell’ambito del monitoraggio e della diagnostica degli impianti.

Assegni Regionali - 2013-2014

Title: Assegni Regionali

Reference:

Year: 2013 – 2014

Sponsor: Regione Liguria

Coordinator:

Partner:

Description: 4 assegni regionali:

SEA-NERGIA prevedere e coordinare l’energia rinnovabile off-shore (no. 2 assegni)

TOP STOP – Thermoeconomic OPtimisation of STOrage systems for smart Polygeneration grids (no. 1 assegno)

POLYGRID: Ottimizzazione di grid poligenerative (elettriche, chimiche; termiche) in presenza di fonti rinnovabili non controllabili. (no. 1 assegno)

IDRO-RIN-TRAN-GENESI: Studio delle tecnologie per la generazione su larga scala di idrogeno da fonti rinnovabili per il trasporto terrestre-navale e la generazione distribuita - 2011-2014

Title: IDRO-RIN-TRAN-GENESI: Studio delle tecnologie per la generazione su larga scala di idrogeno da fonti rinnovabili per il trasporto terrestre-navale e la generazione distribuita

Reference:

Year: 2011 – 2014

Sponsor: MIUR

Coordinator: SIIT

Partner: Università degli studi di Genova; Orizzonte Sistemi Navali S.p.A; Ansaldo Energia S.p.A; CNR-IENI.

Description: The main objective of the project is the large scale production of hydrogen from renewable sources (hydroelectric, wind turbines), its storage and its application in land and marine transports and in distributed generation sector.
The project aims to identify the technologies available on the market and their development, taking into proper account the size of the problem; in parallel, a thermo-economic analysis is performed in order to determinate the optimal solution in terms of thermodynamic and economic performance.
The features of the project are reported below:

• Study of technologies for generating hydrogen by alkaline electrolysers (available on the market) or by high temperature electrolysers (in research), employing renewable electricity as input.
• Study and evaluation of the performance of the production system and hydrogen storage, with particular emphasis to innovative and more efficient solutions (through the use of nano- materials).
• Development of a reactor for the conversion of hydrogen and CO2 in hydro-methane, which, in parallel with hydrogen, may find application in the transport systems (land and naval) and in distributed electricity generation. Hydromethane, compared to hydrogen, presents higher energy density in volume terms; therefore, it does not present the problems of hydrogen related to storage and distribution.
• In order to facilitate the diffusion of hydrogen in land and naval application, the study of innovative and more efficient storage methods (eg nano- materials) are investigated.
• The entire project is completed by a thermoeconomic analysis at the design point and in time-dependent conditions in order to identify the best solutions from both technical and economic point of view, determining the optimal size for different applications.

Idrogeno1

Seaspoon: verso la nuova energia dal mare

Title: Seaspoon: verso la nuova energia dal mare

Reference:

Year: 2011-2013

Sponsor: Distretto Ligure delle Tecnologie Marine

Coordinator:

Partner: Techcom srl

Logo_OK

L’iniziativa è volta allo studio esplorativo di un dispositivo innovativo per la generazione di energia elettrica da fonte rinnovabile marina (moto ondoso), realizzando attività principalmente di ricerca industriale volte all’acquisizione di nuove conoscenze a riguardo della tecnologia “Seaspoon” e della simulazione numerica atta alla previsione della produzione energetica off-shore in base a dati metereologici. Il potenziale del moto ondoso nel mondo potrebbe generare energia per valori dai 750 ai 2000 TWh per anno in accordo alle più recenti analisi prodotte dalla società di consulenza Frost & Sullivan. Per riuscire a sfruttare questa risorsa occorrerebbero investimenti di oltre 500 miliardi di euro. Rimane ancora da dimostrare la competitività economica delle soluzioni ricercate: in tal senso, il concetto del “Seaspoon” si propone come nuova tecnologia in grado di abbattere significativamente i costi iniziali, e consentire lo sfruttamento di campi ondosi molto differenti in forma ed intensità.

Diagnostica dei cicli combinati - 2010

Title: Diagnostica dei cicli combinati

Reference:

Year: 2010

Sponsor: Ansaldo Energia

Coordinator: Prof. A. Massardo

Partner:

Description:

Direttiva UE cogenerazione - 2010

Title: Direttiva UE cogenerazione

Reference:

Year: 2010

Sponsor: Autorità per l’Energia Elettrica ed il Gas

Coordinator: AEEG

Partner:

Description:

Idrogeno da fonti rinnovabili - 2010

Title: Idrogeno da fonti rinnovabili

Reference:

Year: 2010

Sponsor: Regione Liguria

Coordinator:

Partner: Università di Genova

Description:

Diagnostica dei cicli combinati - 2009

Title: Diagnostica dei cicli combinati

Reference:

Year: 2009

Sponsor: Ansaldo Energia

Coordinator: Ansaldo Energia

Partner:

Description:

H2 sustainable buildings - 2009

Title: H2 sustainable buildings

Reference:

Year: 2009

Sponsor: D’Appolonia SpA

Coordinator: D’Appolonia SpA

Partner:

Description:

Biomass - 2009

Title: Biomass

Reference:

Year: 2009

Sponsor: Comunità Europea

Coordinator: Prof. A. Massardo

Partner: Università di Genova (IT), Maritime (FR)

Description:

Diagnostica dei cicli combinati - 2008

Title: Diagnostica dei cicli combinati

Reference:

Year: 2008

Sponsor: Ansaldo Energia

Coordinator: Ansaldo Energia

Partner:

Description:

Biomasse floreali - 2008

Title: Biomasse floreali

Reference:

Year: 2008

Sponsor: IRF

Coordinator: Prof. A. Massardo

Partner:

Description:

Studio di fattibilità per la realizzazione di una cella combustibile ad ossidi solidi a temperatura intermedia IT-SOFC - 2008

Title: Studio di fattibilità per la realizzazione di una cella combustibile ad ossidi solidi a temperatura intermedia IT-SOFC

Reference:

Year: 2008

Sponsor: Parco Scientifico e Tecnologico della Liguria

Coordinator: Prof. A. Traverso

Partner: Università di Genova

Description: This project concerns the feasibility study on the manufacturing and testing of laboratory-scale high temperature fuel cell stacks, namely IT-SOFC. The manufacturing procedure of planar anode-supported cells and the test facility were set up and successfully run. The work encompassed the set up of requirements, the design, the construction, the validation and the testing of a small IT-SOFC stack within the newly developed test station. The work divided into four phases:
1. Manufacturing of anode-supported planar IT-SOFC fuel cells;
2. Assembling of small fuel cell stacks (3-5 cells);
3. Design and construction of the experimental fully automated test station;
4. Functional test and performance verification.
Overall, results were in-lined with requirements, the test facility worked out well and the fuel cell stacks showed acceptable performance. Improvements are possible in the stack design and assembly, especially if larger size stacks are to be developed: the chosen design proved to be effective and practical for testing of the prototype; sealing deposition proved to work out properly. Fuel cell stack performance can be improved further by alternative designs and materials: this work focused on the first step, i.e. the feasibility of technology and the demonstration of the fully automated test station. Now, repeatability of measurements and safety of procedures have been achieved, and they constitute a valuable basis for further technology development and testing.

Gaeta

Analisi delle biomasse autoctone - 2008

Title: Analisi delle biomasse autoctone

Reference:

Year: 2008

Sponsor: Regione Liguria

Coordinator: Prof. A. Massardo

Partner: Università di Genova

Description:

Monitoraggio di Impianti a ciclo combinato di grande taglia - 2007-2008

Title: Monitoraggio di Impianti a ciclo combinato di grande taglia

Reference:

Year: 2007-2008

Sponsor: ANSALDO ENERGIA – GENOVA

Coordinator: E. Pignone

Partner:

Description: Il lavoro consiste nello sviluppo di modelli di previsione delle prestazioni on line di cicli combinati di grande taglia. L’attività verrà sviluppata mediante l’attivazione di un assegno di ricerca.

Biomass Gassification at Savona Lab - 2007

Title: Biomass Gassification at Savona Lab

Reference:

Year: 2007

Sponsor: Univerisity of Genoa

Coordinator: Parco Scientifico Tecnologico della Liguria

Partner:

Description:

H2 combustion in Gas Turbines - 2007

Title: H2 combustion in Gas Turbines

Reference: Enel Produzione Ricerche

Year: 2007

Sponsor: Regione Veneto

Coordinator: Enel Produzione Ricerche (Pisa)

Partner:

Description:

ANALISI ED OTTIMIZZAZIONE DELLE PRESTAZIONI DEGLI IMPIANTI COGENERATIVI PRESSO LO STABILIMENTO ROQUETTE ITALIA 2007

Title: ANALISI ED OTTIMIZZAZIONE DELLE PRESTAZIONI DEGLI IMPIANTI COGENERATIVI PRESSO LO STABILIMENTO ROQUETTE ITALIA

Reference:

Year: 2007

Sponsor: Roquette S.p.A.

Coordinator: Roquette S.p.A.

Partner: Roquette S.p.A.and University of Genoa

Description:

Sistemi ibridi MCFC alimentati a syngas - 2007

Title: Sistemi ibridi MCFC alimentati a syngas

Reference:

Year: 2007

Sponsor: ERG

Coordinator: Ansaldo Fuel Cell Co.

Partner:

Description:

Applicazione AEEG 42/02 - 2007

Title: Applicazione AEEG 42/02

Reference:

Year: 2007

Sponsor: Roquette SpA

Coordinator: Roquette SpA

Partner:

Description:

Uso biomasse Valle Stura - 2007

Title: Uso biomasse Valle Stura

Reference:

Year: 2007

Sponsor: SOBEA

Coordinator: Regione Liguria

Partner:

Description:

Generazione distribuita - 2007

Title: Generazione distribuita

Reference:

Year: 2007

Sponsor: EGL

Coordinator: Prof. A. Massardo

Partner:

Description:

Diagnostica dei cicli combinati - 2007

Title: Diagnostica dei cicli combinati

Reference:

Year: 2007

Sponsor: Ansaldo Energia

Coordinator: Ansaldo Energia

Partner:

Description:

Screening potenzialità di energia da biomasse - 2007

Title: Screening potenzialità di energia da biomasse

Reference:

Year: 2007

Sponsor: Regione Liguria

Coordinator: Regione Liguria

Partner: Università di Genova

Description:

Gassificazione di residui agro-forestali - 2007

Title: Gassificazione di residui agro-forestali

Reference:

Year: 2007

Sponsor: Parco Scientifico e Tecnologico della Liguria

Coordinator: Sorgenia

Partner: Università di Genova

Description:

PRIN-2005 Second Generation Hybrid Systems - 2006-2007

Title: PRIN-2005 Second Generation Hybrid Systems

Reference:

Year: 2006-2007

Sponsor: MIUR

Coordinator: Prof. Aristide F. Massardo

Partner: Politecnico di Milano, Universit? di Brescia, Universit? di Genova

Description:

Analisi di sistemi a Fonti Rinnovabili per la Generazione Distribuita - 2006-2007

Title: Analisi di sistemi a Fonti Rinnovabili per la Generazione Distribuita

Reference:

Year: 2006-2007

Sponsor: Energia Progetti

Coordinator: Prof. A. F. Massardo

Partner:

Description: L’idea di fondo di questo progetto è quella di integrare sistemi di produzione di idrogeno innovativi con impianti di generazione termoelettrica alimentati con combustibili fossili/biomasse o sistemi di termovalorizzazione di residui/rifiuti. Si tratta di sviluppare ricerche e sperimentazioni che consentano di realizzare sistemi di produzione di idrogeno e separazione di CO2 presso siti che impieghino combustibili tradizionali e non, con l’obiettivo di ridurre al minimo il costo di produzione di questo nuovo vettore energetico e di minimizzare l’impatto ambientale.
Un elemento necessario per sviluppare quest’idea è la determinazione dell’intervallo di purezza dell’idrogeno prodotto che influenza le prestazioni dei sistemi finali che lo utilizzano. Noto il livello di purezza, il punto fondamentale da studiare è l’integrazione tra il sistema di produzione di idrogeno e i sistemi che tradizionalmente impiegano i combustibili di partenza, studi che permettono di selezionare i processi più idonei e/o sviluppare nuovi processi e nuove tecnologie di produzione particolarmente economiche ed ambientalmente compatibili.
Per quanto riguarda la purezza è necessario valutare il comportamento dei diversi componenti destinati all’impiego dell’idrogeno. In linea di principio i sistemi che possono utilizzare idrogeno nella generazione elettrica distribuita sono le microturbine, le celle a combustibile, i sistemi termofotovoltaici e i motori Stirling. Mentre per le celle, stante l’attuale tecnologia, è necessaria un’elevata purezza, per le microturbine e gli altri microgeneratori questa caratteristica è meno stringente. Va comunque considerato che la combustione di idrogeno nelle turbine a gas produce ossidi di azoto in quantità maggiori che nella combustione a metano per cui vengono investigati, per raggiungere l’obiettivo “zero emission”, il processo di combustione catalitica, nonché quegli accorgimenti (staging, premiscelazione) propri delle combustione low-NOx.
Le attività saranno prevalentemente di tipo sperimentale e saranno svolte su impianti di piccola taglia già esistenti o da realizzare ad hoc impiegando strumentazione e sistemi di analisi specifici. L’attività sperimentale sarà affiancata da una consistente modellistica matematica tesa a simulare i processi per approfondirne gli aspetti più critici e valutare le problematiche della dinamica e dello scaling up dei processi.

Enel

Dynamic simulation of MGT for MCFC Hybrid systems - 2006-2007

Title: Dynamic simulation of MGT for MCFC Hybrid systems

Reference:

Year: 2006-2007

Sponsor: Ansaldo Fuel Cells Co.

Coordinator: Ansaldo Fuel Cell Co.

Partner:

Description:

Monitoraggio Impianti a Biomassa Forestale Valle Stura - 2006-2007

Title: Monitoraggio Impianti a Biomassa Forestale Valle Stura

Reference:

Year: 2006-2007

Sponsor: SOBEA

Coordinator: Dott. Paolo Derchi – Sobea

Partner:

Description: Il TPG curerà il monitoraggio completo dei due impianti di teleriscaldamento a biomassa esclusivamente forestale delle Valle Stura (Campo Ligure, Rossiglione).

Analisi di fonti rinnovabili per la generazione elettrica - 2006-2007

Title: Analisi di fonti rinnovabili per la generazione elettrica

Reference:

Year: 2006-2007

Sponsor: Energia Progetti – Genova-Milano

Coordinator: Ing. A. Fioretti

Partner:

Description:

Sistemi innovativi di accumulo dell’idrogeno - 2006-2007

Title: Sistemi innovativi di accumulo dell’idrogeno

Reference:

Year: 2006-2007

Sponsor: Regione Veneto

Coordinator: ENEL Produzione Centro Ricerche Pisa

Partner: Enel Produzione S.p.A., SOL S.p.A., CESI, SGS Future S.r.l., Università di Padova, Università di Genova, Venezia Tecnologie S.p.A

Description:

Sviluppo di cicli zero emission a combustione ad idrogeno - 2006-2007

Title: Sviluppo di cicli zero emission a combustione ad idrogeno

Reference:

Year: 2006-2007

Sponsor: Regione Veneto

Coordinator: ENEL Produzione Centro Ricerche Pisa

Partner: ENEL Produzione SpA, Nuovo Pignone SpA, CNR-IRC, Università di Genova, Università di Padova, Università di Trento, Consorzio Pisa Ricerche (CPR), CREAR dell’Università di Firenze

Description: Il progetto di ricerca si propone lo sviluppo di un sistema di combustione a ridotto impatto ambientale di tipo dual gas, ovvero per gas naturale ed idrogeno, da applicarsi su una turbina a gas prototipica, derivata dal modello GE 10 a gas naturale commercializzato da Nuovo Pignone SpA, di seguito anche detta per semplicità NP, che costituirà il cuore dell’impianto cogenerativo ad idrogeno che ENEL Produzione SpA, nel seguito detta ENEL, ha in realizzazione nell’area della centrale termoelettrica di Fusina (Venezia).
Rientra nel progetto la fase di sperimentazione dimostrativa del sistema di combustione innovativo (circa 4000 ore operative equivalenti ) su turbina a gas alimentata ad idrogeno prodotto da processi del polo chimico di Marghera.
Il sistema di combustione, oggetto di sviluppo, sarà capace di:
operare stabilmente in tutto il campo operativo, dal minimo al massimo carico, a gas naturale e, con potenze termiche comprese tra il 50% ed il 100%, potrà operare con continuità ad idrogeno e con emissioni sicuramente inferiori ai 200 ppmV (15% O2) e nei limiti della tecnologia applicata potenzialmente prossime a 100 ppmV (15% O2).
assicurare il corretto funzionamento di una turbina di tipo GE 10, da oltre 10 MWe, inserita in un ciclo cogenerativo sperimentale ad elevata efficienza, di proprietà ENEL ed ubicato nell’area della centrale termoelettrica di Fusina, che utilizzerà prevalentemente idrogeno di risulta ottenuto da cicli produttivi dislocati nell’area di Marghera.
Il conseguimento dell’obiettivo di sviluppo consentirà pertanto di poter sperimentare e dimostrare la fattibilità di un ciclo cogenerativo innovativo alimentato ad idrogeno e di taglia superiore ai 30 MW termici e perciò significativa per delineare caratteristiche, criteri e specifiche di progetto per futuri impianti per generazione elettrica cosiddetti “zero-emission”. Quale risultato di un lavoro di approfondimento sul sistema di combustione si menziona la definizione del progetto concettuale per un combustore innovativo in grado di operare ad idrogeno con emissioni inferiori ai 5 ppmV (15% O2) e che potrà essere commercializzato dal 2015 su turbine di potenza nell’arco di un decennio. L’iniziativa di sviluppo in proposta rientra quindi appieno nel più ampio quadro del programma sull’idrogeno che vede impegnate, nell’area veneziana, ENEL, il consorzio Hydrogen Park ed altre realtà industriali e comunità pubbliche.

Fusina

Sistemi ibridi MCFC - 2006

Title: Sistemi ibridi MCFC

Reference:

Year: 2006

Sponsor: Ansaldo Fuel Cells Co.

Coordinator: Ansaldo Fuel Cell Co.

Partner:

Description:

Probio - 2006

Title: Probio

Reference:

Year: 2006

Sponsor: Regione Liguria

Coordinator: Prof. A. Massardo

Partner: Università di Genova

Description:

Studio ed organizzazione di attività di ship dismantling di navi militari con analisi energetica, ambientale ed economica - 2016-2017

Title: Studio ed organizzazione di attività di ship dismantling di navi militari con analisi energetica, ambientale ed economica

Reference:

Year: 2016 – 2019

Sponsor:

Coordinator:

Partner: Università degli Studi di Genova, AID – Azienda Industria Difesa

Description: sviluppare un Piano di Riciclaggio Nave, competitivo e sostenibile, che descriva dettagliatamente tutte le attività previste nell’ambito di un progetto di smantellamento che abbia quale obiettivo quello di massimizzare la separazione dei materiali di risulta e le operazioni di recupero. Il Piano di Riciclaggio Nave deve anche includere un Piano di Gestione Rifiuti dettagliato che descriva le modalità di smaltimento, recupero e riutilizzo di tutti i materiali prodotti durante le attività di smantellamento

Sistemi integrati di produzione di idrogeno e sua utilizzazione nella generazione distribuita - 2005-2009

Title: Sistemi integrati di produzione di idrogeno e sua utilizzazione nella generazione distribuita

Reference:

Year: 2005-2009

Sponsor: MIUR

Coordinator: ENEL Produzione Centro Ricerche Pisa

Partner: Consorzio PISA RICERCHE, ENEL PRODUZIONE SpA, CNR Istituto Ricerche sulla Combustione (CNR-IRC), Università di Napoli “Federico II”, Università di Genova, CRS4 – Centro di Ricerca, Sviluppo e Studi Superiori in Sardegna, RIELLO S.p.A, EniTecnologie.

Description: L’idea di fondo di questo progetto è quella di integrare sistemi di produzione di idrogeno innovativi con impianti di generazione termoelettrica alimentati con combustibili fossili/biomasse o sistemi di termovalorizzazione di residui/rifiuti. Si tratta di sviluppare ricerche e sperimentazioni che consentano di realizzare sistemi di produzione di idrogeno e separazione di CO2 presso siti che impieghino combustibili tradizionali e non, con l’obiettivo di ridurre al minimo il costo di produzione di questo nuovo vettore energetico e di minimizzare l’impatto ambientale.
Un elemento necessario per sviluppare quest’idea è la determinazione dell’intervallo di purezza dell’idrogeno prodotto che influenza le prestazioni dei sistemi finali che lo utilizzano. Noto il livello di purezza, il punto fondamentale da studiare è l’integrazione tra il sistema di produzione di idrogeno e i sistemi che tradizionalmente impiegano i combustibili di partenza, studi che permettono di selezionare i processi più idonei e/o sviluppare nuovi processi e nuove tecnologie di produzione particolarmente economiche ed ambientalmente compatibili.
Per quanto riguarda la purezza è necessario valutare il comportamento dei diversi componenti destinati all’impiego dell’idrogeno. In linea di principio i sistemi che possono utilizzare idrogeno nella generazione elettrica distribuita sono le microturbine, le celle a combustibile, i sistemi termofotovoltaici e i motori Stirling. Mentre per le celle, stante l’attuale tecnologia, è necessaria un’elevata purezza, per le microturbine e gli altri microgeneratori questa caratteristica è meno stringente. Va comunque considerato che la combustione di idrogeno nelle turbine a gas produce ossidi di azoto in quantità maggiori che nella combustione a metano per cui vengono investigati, per raggiungere l’obiettivo “zero emission”, il processo di combustione catalitica, nonché quegli accorgimenti (staging, premiscelazione) propri delle combustione low-NOx.
Le attività saranno prevalentemente di tipo sperimentale e saranno svolte su impianti di piccola taglia già esistenti o da realizzare ad hoc impiegando strumentazione e sistemi di analisi specifici. L’attività sperimentale sarà affiancata da una consistente modellistica matematica tesa a simulare i processi per approfondirne gli aspetti più critici e valutare le problematiche della dinamica e dello scaling up dei processi.

Enel1

FISR - Integrated Systems for Hydrogen Production and Utilization in the Distributed Generation - 2005-2008

Title: FISR – Integrated Systems for Hydrogen Production and Utilization in the Distributed Generation

Reference:

Year: 2005-2008

Sponsor: Italian Ministry of Research and Universities

Coordinator: Consorzio PISA RICERCHE

Partner: Pisa Ricerche, Riello, ENEL Produzione, CRS4, CNR Napoli, Università di Napoli, Università di Genova

Description: The aim of this project is the integration of hydrogen production innovative systems with power plants feed with fossil fuels, biomass or thermovalorisation systems of waste. It is based on the development of research and experiments to obtain hydrogen production and CO2 sequestration systems inside plants using traditional fuels or not, with the objective of minimising the hydrogen production cost and the environmental impact.

FISR-Bicocca - 2005-2008

Title: FISR-Bicocca

Reference:

Year: 2005-2008

Sponsor: MIUR

Coordinator: Aristide F. Massardo – UNIGE

Partner: Politecnico di Milano, ENEA, Zincar, Ansaldo Fuel Cells, Università di Genova

Description:

FISR

PROBIO-WOODLAND ENERGY - 2005-2006

Title: PROBIO-WOODLAND ENERGY

Reference:

Year: 2005-2006

Sponsor: Ministero delle Attività Agricole e Forestali

Coordinator: ARSIA Toscana

Partner:

Description:

Modelli di impianto cogenerativo - 2005

Title: Modelli di impianto cogenerativo

Reference:

Year: 2005

Sponsor: Roquette SpA

Coordinator: Roquette SpA

Partner:

Description:

Gassificazione di prodotti agricoli - 2005

Title: Gassificazione di prodotti agricoli

Reference:

Year: 2005

Sponsor: Energia Progetti

Coordinator: Prof. A. Massardo

Partner:

Description:

Modelli di impianto cogenerativo - 2005

Title: Modelli di impianto cogenerativo

Reference:

Year: 2005

Sponsor: Roquette SpA

Coordinator: Roquette SpA

Partner:

Description:

Gassificazione di prodotti agricoli - 2005

Title: Gassificazione di prodotti agricoli

Reference:

Year: 2005

Sponsor: Energia Progetti

Coordinator: Prof. A. Massardo

Partner:

Description:

Analysis, optimisation and experimentation of CHP systems based on microturbine and fuel cell technology - 2002-2003

Title: Analysis, optimisation and experimentation of CHP systems based on microturbine and fuel cell technology

Reference:

Year: 2002-2003

Sponsor: ENEL Production Research Centre, Pisa, Italy

Coordinator:

Partner:

Description: This consultant project aims at the thermoeconomic optimisation of fuel cell/microturbine-based CHP for distributed cogeneration. The project is being developed by the TPG in close collaboration with ENEL for distributed heat and power generation.

Analysis of distributed cogenerative plants - 2002

Title: Analysis of distributed cogenerative plants

Reference:

Year: 2002

Sponsor: Agenzia Regionale per l’energia – Regione Liguria, Italy

Coordinator: TPG

Partner:

Description: NOT AVAILABLE

Assessment and design of three biomass plant for district heating - 2002

Title: Assessment and design of three biomass plant for district heating

Reference:

Year: 2002

Sponsor: Regione Liguria – Comunita’ Montana Valle Stura, Italy

Coordinator: TPG

Partner:

Description: NOT AVAILABLE

Microcogen -2001-2003

Title: Microcogen

Reference:

Year: 2001-2003

Sponsor: Italian Ministry of Research and Universities

Coordinator: Ansaldo Ricerche (ARI), Genova, Italy

Partner:

Description: Design of a recuperated microturbine for distributed heat and power generation. The project aims to develop Italian technology in the field of microturbine engines, dealing with the distributed generation that is expected to meet an increasing share of the national energy demand in the short-term.

Externally Fired micro Gas Turbine - 2001-2002

Title: Externally Fired micro Gas Turbine

Reference:

Year: 2001-2002

Sponsor: Italian Ministry of Research and Universities

Coordinator: Ansaldo Ricerche (ARI), Genova, Italy

Partner:

Description: The project was aimed at the analysis, feasibility assessment, installation and experimentation of an Externally Fired microturbine pilot-plant at the ARI laboratories.

The experience gained in the field will allow the development of accurate and reliable models for the performance prediction and design procedure. Particular attention was paid to the transient behaviour and control system.

Moreover, the collected experimental data contributed to the development of externally fired gas turbine cycle technology that is one of the “clean” options for the exploitation of “dirty” fuels such as coal and biomass.

Biodiesel application for the olive industry - 2001-2002

Title: Biodiesel application for the olive industry

Reference:

Year: 2001-2002

Sponsor: Ponente Oli, Imperia, Italy

Coordinator: TPG

Partner:

Description: Feasibility study and experimentation of a biodiesel-fueled engine in an industrial site.

High temperature fuel cell hybrid system and humid air cycle modelling - 2001

Title: High temperature fuel cell hybrid system and humid air cycle modelling

Reference:

Year: 2001

Sponsor: ENEL Production Research Centre, Pisa, Italy

Coordinator:

Partner:

Description: This consultant project aimed at modelling and predicting the performance of hybrid systems which are based on high-temperature fuel cells and microturbine technology. Moreover, the project dealt with the modelling of humid air cycles for medium-size applications

Closed Brayton Cycle (CBC) Plant Dynamic Analysis for Space Applications - 2001

Title: Closed Brayton Cycle (CBC) Plant Dynamic Analysis for Space Applications

Reference:

Year: 2001

Sponsor: Agenzia Spaziale Italiana (ASI), Italy.

Coordinator:

Partner:

Description: The main goal of this research project was the development of a calculation tool to describe the thermodynamic performance of a Closed Brayton Cycle (CBC) for aerospace applications, with particular concern for Space Station Freedom (International Space Station).

The CBC system is based on a regenerative closed Brayton cycle where the working fluid is a mixture of Helium and Xenon and the primary energy source (sunlight) is focused into a receiver by a mirror (concentrator).

The research activity was divided into two main sub-programs. The first one dealt with the thermodynamic analysis, design and sizing, including global system optimisation. The second one dealt with the detailed issues of components: the complex heat transfer process related to the receiver, the thermal energy storage, the recuperator heat exchanger and, finally, the radiator. All these aspects required a deep knowledge and application of advanced heat transfer processes and heat rejection systems.

After the code was developed and tested, the plant dynamic analysis was carried out to evaluate its performance at the variable conditions of insulation and space temperature during the orbital period.

spdm_module

Forest biomass for energy applications in Liguria - 2001

Title: Forest biomass for energy applications in Liguria

Reference:

Year: 2001

Sponsor: Regione Liguria

Coordinator: ARI

Partner:

Description: Analysis and monitoring of the forests in Liguria region (North of Italy) for future exploitation of forest biomass

Low CO2 emission energy cycles - 2001

Title: Low CO2 emission energy cycles

Reference:

Year: 2001

Sponsor: MIUR – Cofinanziamento 1999

Coordinator: MIUR

Partner:

Description: The project was aimed at studying and analysing low and zero CO2 emission power plants, taking into account the economic impact.

Innovative solutions for biomass-fueled heat and power plants - 2001

Title: Innovative solutions for biomass-fueled heat and power plants

Reference:

Year: 2001

Sponsor: Parco Scientifico e Tecnologico della Liguria

Coordinator: TPG

Partner:

Description: The project was aimed at studying and analysing low and zero CO2 emission power plants, taking into account the economic impact.

Assessment and preliminary design of a biomass plant for heat production in Sassello town - 2001

Title: Assessment and preliminary design of a biomass plant for heat production in Sassello town

Reference:

Year: 2001

Sponsor: Comunit? Montana del Giovo (SV), Italy

Coordinator: TPG

Partner:

Description: NOT AVAILABLE

Innovative radiators for power generation in space stations - 2000

Title: Innovative radiators for power generation in space stations

Reference:

Year: 2000

Sponsor: Italian Space Agency (ASI)

Coordinator: TPG

Partner:

Description: not available

Partial Oxidation - 1998

Title: Partial Oxidation

Reference:

Year: 1998

Sponsor: Ansaldo Ricerche (ARI), Genova, Italy

Coordinator: ARI

Partner:

Description: Off-design behaviour and performance of a gas turbine with partial oxidation of methane